
© 2025 the author(s)
Licensed under Creative Commons Attribution International 4.0 (CC-BY-4.0).

dr. heap is an independent publication, for informational and educational purposes only. Opinions
expressed here do not necessarily reflect those of any organization—including the past, current
and future employer(s) of the author(s) or any of their affiliations and/or associations.

On Invariance and Inconsistency

Hans-Dieter A. Hiep

February 16, 2024

1 Introduction

How can you explain important concepts from program correctness in a simple
and intuitive manner? In this blog post, we shall have a look at some puzzles
and analyze them from the perspective of program correctness. This way we
can nicely explain and demonstrate the usefulness of two important concepts,
namely invariants and inconsistent specifications.

The puzzles we study here come from the book Algorithmic Puzzles [1] by
Anany and Maria Levitin, published by Oxford University Press in 2011. This
book presents 150 puzzles that are good candidates for applying analytical and
logical thinking skills (the puzzles can also be used as challenging interview
questions). We make a small selection of the puzzles, and we will see them
answered from the perspective of program correctness. In program correctness,
we consider a program to be correct with respect to a given program specifi-
cation. A program specification is a specific formulation of a requirement. For
example, a specification of what the output of a program must be given some
input. More specifically (no pun intended), we can rephrase the puzzles in such
way that a puzzle can seen as a program specification, and proving that there
exists a program that is correct with respect to that specification would then
solve the puzzle in question. Or, alternatively, we show that there is no solution
to the puzzle, by arguing there cannot be a correct program in the first place.

First we shortly revisit preliminaries (Section 2). This article does assume
the reader is already somewhat familiar with the basics of programming and
program correctness, but we nevertheless quickly revisit the basic concepts. For
a thorough introduction to program correctness, one could take a look at one
of the following books (in order of appearance):

• A Discipline of Programming by Edsger Dijkstra (1976),

• Mathematical Theory of Program Correctness by Jaco de Bakker (1980),

• The Science of Programming by David Gries (1981),

• Program Verification by Nissim Francez (1992), or

• Verification of Sequential and Concurrent Programs by Krzysztof Apt,
Frank de Boer & Ernst-Rüdiger Olderog (2009).

1

https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9677-6644

On Invariance and Inconsistency

Then we shed light on the concept of an invariant by discussing the 5th
puzzle of the book, ‘Row and Column Exchanges’ (Section 3). We also look
at why declarative specifications are useful by discussing the 12th puzzle of the
book, ‘Questionable Tiling’ (Section 4). But we also discuss more generally the
importance of invariants and formulating consistent specifications (Section 5).

2 Preliminaries

We shall restrict our attention to a simple imperative programming language:

S ::= x := a | S1;S2 | if b then S1 else S2 fi | while b do S od

where we use not only x as variable but also y, z, . . . (possibly with subscripts),
where the terms a of the language are the usual arithmetical expressions:

a ::= 0 | 1 | x | −a | (a1 + a2) | (a1 × a2)

and where the terms b of the language are the Boolean expressions:

b ::= (a1 = a2) | (a1 < a2) | (b1 ∧ b2) | (b1 ∨ b2) | ¬b

We also have the usual abbreviations, such as (a1 ≤ a2), that abbreviate more
complex expressions, such as (a1 < a2) ∨ (a1 = a2), respectively. The numerals
2, 3, 4, . . . are also abbreviations of complex expressions (1+1), (1+2), (1+3), . . .

We also have first-order formulas, captured by the following syntax:

ϕ, ψ ::= b | (ϕ→ ψ) | (∀x)ϕ

Other logical connectives, such as (ϕ ∧ ψ) and ¬ϕ, can seen as abbreviations.
First-order logic involves first-order universal quantification (∀x)ϕ, and we have
the dual of first-order existential quantification (∃x)ϕ as abbreviation of ¬(∀x)¬ϕ.
Quantification only ranges over individuals, so in our case integers.

Now let us consider semantics. Let σ be a state (an assignment of variables
to integer values). We have the usual semantics for arithmetical expressions a
and Boolean expressions b: JaKσ denotes an integer value and JbKσ denotes a
Boolean value. Note that an expression depends only on finitely many variables,
and we only deal with pure expressions in our simple language. Each statement
S of our programming language denotes a transition relation of states:

JSK ⊆ Σ× Σ

where Σ is the set of states (with typical element σ), and Σ × Σ is the set of
pairs of states. A statement denotes a binary relation between initial and final
states. Each formula ϕ denotes a set of states:

JϕK ⊆ Σ

in the sense that in each state σ ∈ JϕK the formula ϕ is true, also written σ |= ϕ.

© 2025 the author(s) 2 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

On Invariance and Inconsistency

In program correctness we combine two languages: a programming language
and a specification language. The programming language is already given above.
As specification language we take the above first-order language. Note that the
variables of formulas in the assertion language are the same variables we use in
the programming language. We can now form the Hoare triples:

{ϕ} S {ψ}

where ϕ is called the precondition and ψ is called the postcondition. A Hoare
triple is correct when the statement S satisfies the input/output specification
given by the precondition ϕ and the postcondition ψ, and a Hoare triple is
incorrect otherwise. Note that the (global) variables of S and the (free) variables
of the formulas ϕ and ψ are bound to each other. Formally, we define

|= {ϕ} S {ψ} if and only if JSK(JϕK) ⊆ JψK

where R(X) is the left-restriction of the binary relation R by the set X, that is,
R(X) = {y | xRy for some x ∈ X}. Unpacking this formal definition gives us

|= {ϕ} S {ψ} if and only if σ ∈ JϕK and (σ, τ) ∈ JSK implies τ ∈ JψK.

Incorrectness means that S has a bug. Suppose we start in some initial state
σ which satisfies the precondition ϕ, and we execute S from that state, and that
execution results in some final state τ . If the final state τ does not satisfy ψ,
then we have found a bug! Formally,

̸|= {ϕ} S {ψ} if and only if σ |= ϕ and (σ, τ) ∈ JSK and τ ̸|= ψ for some σ, τ.

Hoare logic is a formal system in which Hoare triples can be derived, in which
case one writes ⊢ {ϕ} S {ψ}. Hoare logic is sound and (relatively) complete,
meaning that we have

⊢ {ϕ} S {ψ} if and only if |= {ϕ} S {ψ}

under some reasonable assumptions.1 See one of the books mentioned in in the
introduction for a presentation of Hoare logic, or Wikipedia.

A quick example is the following Hoare triple. Is it correct or not?

{y = 0} x := 1;while x ≤ z do y := y + x;x := x+ 1 od {2× y = z × (z + 1)}

To verify the loop, we need to come up with a so-called loop invariant: a con-
dition that holds at four control points (1) before entering the loop, (2) before
the loop body begins, (3) after the loop body ends, and (4) after the loop is
exited. Finding loop invariants is difficult, and often it takes multiple tries until
one finds a suitable invariant. In the above example, one can take:

1 ≤ x ≤ z + 1 ∧ 2× y = (x− 1)× x

where (x− 1) abbreviates (x+−1) and the chain of inequalities is conjunctive.

1Access to an oracle that provides the valid formulas in arithmetic (this is an undecidable
problem), and the expressivity of loop invariants.

© 2025 the author(s) 3 CC-BY-4.0

https://en.wikipedia.org/wiki/Hoare_logic
https://creativecommons.org/licenses/by/4.0/

On Invariance and Inconsistency

3 Invariants

In this section we discuss a puzzle in which invariants play a prominent role. The
5th puzzle of the book Algorithmic Puzzles is ‘Row and Column Exchanges’:

Can you transform the left table into the right table of Figure 1 by
exchanging its rows and columns?

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

→ . . .→

12 10 11 9

16 14 5 13

8 6 7 15

4 2 3 1

Figure 1. Initial and final table.

(It is recommended that the reader first tries out solving this puzzle herself!)
To get a sense of what the puzzle asks for, let us perform the operations of

swapping rows and columns in a table. An example of a sequence of successive
applications of these operations is shown in Figure 2.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

→

13 14 15 16

5 6 7 8

9 10 11 12

1 2 3 4

→

16 14 15 13

8 6 7 5

12 10 11 9

4 2 3 1

Figure 2. The start of a sequence of exchanges.

This figure shows:

1. The first table shows the initial table of Figure 1, our starting point in
this puzzle.

2. After the first step, we have exchanged the first and last row. So we
swapped the values 1, 2, 3, 4 and 13, 14, 15, 16.

3. After the second step, we have also exchanged the first and last column.
So we swapped the values 13, 5, 9, 1 and 16, 8, 12, 4.

Notice that we have now obtained a table, in which the last row coincides
with the values of the final table we wish to obtain (the last row is ‘correct’
with respect to the desired final table). To get closer to the final table, we can
continue the series of operations as in Figure 3, where we perform two additional
steps: we swap the first and third row, and we swap the second and third row.

In the resulting table, we have colored the cells that have values in the right
place when comparing it to the final table in Figure 1. This particular example
shows that we are not there yet. Click here for a Rust implementation of this
example.

© 2025 the author(s) 4 CC-BY-4.0

https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=8481cfe72a96f11d697b4c909f22449a
https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=8481cfe72a96f11d697b4c909f22449a
https://creativecommons.org/licenses/by/4.0/

On Invariance and Inconsistency

16 14 15 13

8 6 7 5

12 10 11 9

4 2 3 1

→

12 10 11 9

8 6 7 5

16 14 15 13

4 2 3 1

→

12 10 11 9

16 14 15 13

8 6 7 5

4 2 3 1

Figure 3. Continuing the series of exchanges.

Just giving this single example, where we have not solved the puzzle (since
the final table is not ‘correct’), is not a solution the puzzle! But one may wonder,
whether there exists a solution at all. If there exists a solution, then we have
not yet found it. But, if there is no solution to be found, then just showing this
single counter-example is not sufficient proof.

Imagine that these tables are representations of state, where the state is an
assignment of integers to variables (each cell in the table is modeled by its own
variable, sixteen in total). There are two primitive operations that work on this
state:

• to swap two columns C(j, j′), and

• to swap two rows R(i, i′).

The puzzle can be rephrased by asking whether we can come up with a program
that is composed out of these two primitive operations. Instead of our simple
programming language given above, where the only primitive operation is the
assignment x := a, we instead consider the programming language with only
these two primitive operations. In this way we realize encapsulation, in the sense
that the program may not directly modify the state by means of an assignment,
only indirectly through the exposed operations.

This may remind the reader of object-oriented programming. Each table
could be seen as an instance of a class of objects, which has an encapsulated
internal state. The class of objects exposes a number of operations, viz. it has
a well-defined interface. We ask ourselves now: does there exists a client, which
can only work with the interface and not directly modify the internal state, that
solves our puzzle?

What does it mean to solve the puzzle? We can formulate the Hoare triple

{
∧

i∈[1,4]

∧
j∈[1,4]

xi,j = (i− 1)× 4 + j} S {x1,1 = 12 ∧ . . . ∧ x4,4 = 1}

where x1,1 until x4,4 are the sixteen variables corresponding to the cells of the
table.2 Note that in the postcondition we simply require the variables to have
the proper values, as indicated in Figure 1. If we can find a program S that

2Technically, the ‘quantifiers’ in the precondition are not first-order quantifiers but instead
abbreviations where i and j are meta-variables that range over finitely many constant values:
thus the formula is a big conjunction with sixteen clauses where each clause specifies the value
of precisely one variable.

© 2025 the author(s) 5 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

On Invariance and Inconsistency

is composed of only these primitive operations, and prove it correct, we have
solved the puzzle!

To understand the meaning of the primitive operations, we give a set of
Hoare triples that we take as axioms (technically, we give an axiom scheme).
This approach is also known as the ‘axiomatic approach’, where we abstract
from the exact semantics of the primitive operations. Here we go (assuming
meta-variables j ∈ [1, 4] and j′ ∈ [1, 4]):

{
∧

i∈[1,4]

xi,j = yr ∧
∧

i∈[1,4]

xi,j′ = zr} C(j, j′) {
∧

i∈[1,4]

xi,j = zr ∧
∧

i∈[1,4]

xi,j′ = yr}

The ‘freeze variables’ y1, . . . , y4 capture the old values at column j, and z1, . . . , z4
capture old values at column j′. In the postcondition, we use the (unchanged)
freeze variables to refer to the old values at the beginning of the swapping op-
eration. This argument crucially relies on the fact that the operation C(j, j′)
only changes the variables in the set {xi,j , xi,j′ | i ∈ [1, 4]}. By Hoare’s invari-
ance rule, we know that any property about the other variables thus remains
invariant. A similar axiom scheme can be given for swapping the rows.

We could think of an object invariant : a property that holds of the internal
state of the object, that must be preserved by every operation that is performed
by any client. Note that object invariants may be temporarily broken in the
implementation of an operation, as long as the object invariant is restored before
the implementation terminates.

The beauty of invariants is that they are a powerful tool for answering these
kinds of puzzle questions. When we are able to find some invariant, that is
true for the initial table but false for the final table, then we must know: the
final table cannot be obtained by means of these operations only, since all the
operations preserve the object invariant!

An example of an object invariant in this case would be the property: the
table has the values {1, . . . , 16}. In other words, every value in the table is
in {1, . . . , 16} and every value of {1, . . . , 16} is somewhere in the table. Let’s
formalize it (Equation 1):

{xi,j | 1 ≤ i, j ≤ 4} = {1, . . . , 16}. (1)

The set comprehension on the left collects all values in the table in a set. The
set expression on the right is the finite set consisting of the integers 1 up to
and including 16. The property now expresses that these two sets are identical,
i.e. have precisely the same members. This property holds for the initial state
of the object, and it also is preserved by every operation: swapping two rows,
or swapping two columns, does not introduce any new values and thus does not
invalidate this property. Hence, this property is an object invariant.

The final table of Figure 1 also satisfies the object invariant of Equation 1.
So this invariant, while nice to know, is not useful in answering the puzzle
question. We can only prove that there is no solution to the puzzle when we find
an invariant, that holds of the initial state and is preserved by the operations,
but does not hold in the final state.

© 2025 the author(s) 6 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

On Invariance and Inconsistency

Just how finding loop invariants (to show the correctness of a program) is
a difficult problem, finding object invariants (to show there can be no correct
program) is also a difficult problem. Finding invariants may require several
tries. Let us try another invariant. Consider that we not only have a set of
values, but in fact we have a set of sets of values:{

{xi,j | 1 ≤ i ≤ 4} | j ≤ 4
}
=

{
{1, 2, 3, 4}, . . . , {13, 14, 15, 16}

}
The outer set consists of the sets corresponding to the values one finds at each
row. And the inner sets consists of the values present at each row. If we swap
two rows, the invariant is preserved because the outer set does not care about
the order of its values (sets of integers). If we swap two columns, then the
invariant is preserved, because the set of values at each row remain the same
when we have swapped two columns.

Now, looking at Figure 1 we see that the initial table satisfies this property.
However, if we look at the final table we see that it does not satisfy this property.
The final table has as set of sets of integers:{

{12, 10, 11, 9}, {16, 14, 15, 13}, {8, 6, 7, 5}, {4, 3, 2, 1}
}
.

Sure, the first and last row are correct, so we could focus on comparing the sets{
{16, 14, 5, 13}, {8, 6, 7, 15}

}
and

{
{16, 14, 15, 13}, {8, 6, 7, 5}

}
which cannot be equal because both sets contain values that are not contained
in the other set. Hence the final table does not satisfy the invariant, which
finally proves that there is no solution! (We shall further discuss this problem
in Section 5.)

4 Logical specifications

We have a look at the 12th puzzle of the Algorithmic Puzzles book, ‘Question-
able Tiling’ (with a slightly different phrasing):

Is it possible to tile an 8-by-8 board with dominoes (2-by-1 tiles)
such that no two dominoes lie next to each other in parallel?

(Again, the reader should first try to solve this puzzle herself!)
Before even beginning to solve the problem, we should first try to get an

exact understanding of the puzzle by understanding each part of the question:

• What is a ‘tiling of dominoes’ on an 8-by-8 board?

• What does it mean when two dominoes ‘lie next to each other in parallel’?

Suppose we formalize the 8-by-8 board, again by means of a table. Each cell
of the table is again understood to be represented by the variables xi,j where
i is the row counted from the top and j is the column counted from the left.
But what do the values of these variables mean? We could devise the following
encoding:

© 2025 the author(s) 7 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

On Invariance and Inconsistency

• If a variable xi,j has value 0 it means that the cell is empty.

• If a variable xi,j has some positive value, then that positive value identifies
a domino piece.

For example, see Figure 4 where we have a table that encodes an 8-by-8 board
with only four dominoes. Note that in this and the following pictures, only the
numbers in the cells are significant and not the colors. Colors are only for visual
aid. Further, what is shown in Figure 4 is not a tiling yet, it is a partial tiling
and towards becoming a complete tiling.

2 2 1 0 0 0 0 0

0 3 1 0 0 0 0 0

0 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 4 4 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Figure 4. An encoding of dominoes on an 8-by-8 board.

One fruitful approach would be looking for patterns. A pattern is, figura-
tively speaking, a small ‘frame’ or ‘scope’ that you locally could observe in the
picture. These patterns are ‘timeless’ and observed of the outcome, and thus
do not care about the intermediary state one has passed through to obtain the
outcome. Finding patterns is a useful ability of a declarative programmer.

One can observe already the following properties:

Property 1. (Number of dominoes in tiling)
In an 8-by-8 table, a complete tiling has exactly 8×8

2 = 32 numbers iden-
tifying domino pieces.

Property 2. (Size of single domino)
Every number identifying a domino piece occurs at most twice.

Property 3. (Dominoes line up)
Given a cell of a table that contains a number identifying a domino. Now
consider its immediate neighborhood (the cells on the top, right, bottom,
left—but not the diagonal cells). We observe that the following must hold:
a cell above, on the left, below, or on the right of the given cell exists and
has the same domino identifying number. The other neighboring cells
must have a different value. See also Figure 5 for a picture, but note that
these patterns only work for interior cells. For cells on the border, the
pattern need not check outside bounds.

© 2025 the author(s) 8 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

On Invariance and Inconsistency

k

n1 k n3

n2

or

n1

n2 k k

n3

or

n2

n3 k n1

k

or

n3

k k n2

n1

Figure 5. Patterns to check that numbers line up. Here, k is the number
identifying a domino and we have k ̸= n1, k ̸= n2, k ̸= n3.

Now, consider completing the tiling in Figure 4. What domino do we place
on the left of the domino identified by number three (the blue one)? It will form
a 2-by-2 square. We also form a 2-by-2 square if we would place another domino
directly below and in parallel with the domino identified by number four (the
purple one). These are undesired according to the puzzle.

We end up with the following property:

Property 4. (No parallel dominoes)
In each 2-by-2 square there are not exactly two dominoes. See Figure 6
for the two forbidden patterns.

n m

n m

n n

m m

Figure 6. Two patterns that show how two dominoes form a 2-by-2 square.

We can now formalize the properties, and obtain a program specification.

Property 1. (Number of dominoes in tiling)

|D| = 8× 8

where D is the set of domino identifying numbers that occur somewhere
in the table, that is, D = {xi,j | 1 ≤ i, j ≤ 8} ∩ {n | n > 0}.

Property 2. (Size of single domino)

|{(i, j) | k = xi,j and 1 ≤ i, j ≤ 8}| = 2 for each k ∈ D.

Property 3. (Dominoes line up)
For every 1 ≤ i, j ≤ 8 there is some ℓ ∈ K(i, j) such that

xi,j = xℓ ∧
∧

k∈K(i,j)\{ℓ}
xi,j ̸= xk

where K(i, j) is the set of neighboring coordinates within bounds

{(i+ 1, j), (i, j + 1), (i− 1, j), (i, j − 1)} ∩ {(i′, j′) | 1 ≤ i′, j′ ≤ 8}.

© 2025 the author(s) 9 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

On Invariance and Inconsistency

Technically, we have that x(i,j) is defined to be equal to xi,j so we can use the
coordinates to refer to a particular subscripted variable.

Property 4. (No parallel dominoes)
For every 1 ≤ i, j < 8 we have

|{x(i,j), x(i+1,j), x(i,j+1), x(i+1,j+1)} ∩ {n | n > 0}| ≠ 2.

These properties can be abbreviated to P1, P2, P3, P4, respectively. Now the
puzzle amounts to finding a program S that changes the variables x1,1, . . . , x8,8
such that we can prove

{true} S {P1 ∧ P2 ∧ P3 ∧ P4}.
Consider a program that assigns the cells’ values according to Figure 7. We can
now verify whether the program indeed satisfies the specification, by checking
whether all properties hold.

1 1 2 2 3 3 4 4

L 5 5 6 6 7 7 U

L O 8 8 9 9 S U

M O Q A A R S V

M P Q B B R T V

N P C C D D T W

N E E F F G G W

H H I I J J K K

Figure 7. An encoding of dominoes on an 8-by-8 board (we use a duotrigesimal
numbering system, the shifted ‘extended hex’ numbers).

P1 holds because there are exactly 32 dominoes in the final state assigned
to the variables. P2 holds since every number identifying a domino piece occurs
exactly twice. Also P3 holds, and this can easily be seen by the different colors.
However, checking P4 shows that the property is violated (see the center).

If we slightly generalize the problem, then we see there is a solution. Suppose
the board is infinite, i.e. we have an ∞-by-∞ board, which we start tiling from
the top-left corner. Then the following brick laying pattern can be continued
indefinitely (see Figure 8):

• Start horizontally with the dominoes A1, A2, . . . and lay the next on the
right of the previous one until the entire first row is covered with dominoes.

• Continue vertically with the dominoes B1, B2, . . . and lay the next below
the previous one until the entire first column is also covered with dominoes.

• We are now in the same situation as before: we want to fill an ∞-by-∞
board, so we repeat the strategy of first laying C1, C2, . . . horizontally and
then laying D1, D2, . . . vertically.

© 2025 the author(s) 10 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

On Invariance and Inconsistency

A1 A1 A2 A2 A3 A3 A4 A4 · · ·
B1 C1 C1 C2 C2 C3 C3 C4 · · ·
B1 D1 E1 E1 E2 E2 E3 E3 · · ·
B2 D1 F1 G1 G1 G2 G2 G3 · · ·
B2 D2 F1 H1 I1 I1 I2 I2 · · ·
B3 D2 F2 H1 J1 K1 K1 K2 · · ·
B3 D3 F2 H2 J1 L1 M1 M1 · · ·
B4 D3 F3 H2 J2 L1 N1 O1 · · ·
...

...
...

...
...

...
...

...
. . .

Figure 8. Laying dominoes on an ∞-by-∞ board.

Such an infinite board would then satisfy these properties:

• The number of dominoes on the infinite board are also infinite.

• If we make sure that each domino is represented by a different number,
then each such number occurs only twice. For example, we could take
the numbering scheme where for each domino that lies on the coordinates
(i, j) and (i′, j′) we take as identifier min(2i3j , 2i

′
3j

′
).

• The dominoes are placed correctly, as can be observed from the coloring.

• There are no parallel dominoes, since each 2-by-2 square has exactly three
dominoes.

Note that we avoided the occurrence of four dominoes within a 2-by-2 square,
as shown in Figure 9.

1

1 2 2

4 4 3

3

2

1 1 2

4 3 3

4

Figure 9. Laying dominoes in such a way that there are four different dominoes
in the middle 2-by-2 square.

More generally, we never have any of the patterns in Figure 10 occurring. These
patterns are called the top-right corner and bottom-left corner. Note that these
patterns do occur in Figure 9, so already from knowing the absence of these
two corners we also know that there can be no four different dominoes within a
2-by-2 square.

Now suppose we would cut off the board of Figure 8 so to obtain an 8-by-
8 board. We then see problems occurring at the boundaries, with dominoes
sticking out. Here are two instances:

© 2025 the author(s) 11 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

On Invariance and Inconsistency

n n m

m
or

n n

m

m

or
n

n m m
or

n

n

m m

Figure 10. Patterns that never occur in the infinite solution.

1. On the first column, we see that the domino B4 falls out of bounds. Hence
the only way to lay down that domino is by turning it 90 degrees.

2. On the second row, we see that the domino C4 also falls out of bounds.
Also here we would need to lay down that domino turned by 90 degrees.

What we thus see, is that whenever the board is finite, it must have one of the
corners of Figure 10. We shall now argue that it is impossible to satisfy P4,
the property that no dominoes are parallel, whenever we have the (necessary)
top-left corner and also either the bottom-left or the top-right corner on the
board. We make a number of simplifying assumptions, but these do not hurt our
demonstration (that is to say, these assumptions are without loss of generality):

• we assume we work on an arbitrary n-by-n board where n is even,

• we assume we start with the same type of top-left corner and top-right
corner where the horizontal domino is on top,

• we assume that both corners occur on the same height.

A1 A1 A2 A2 · · · An−1 An−1 An An

B1 Cn

B1 Cn

Figure 11. Starting situation of the impossibility result.

Now consider the situation of Figure 11. Consider that, if we were to satisfy all
properties P1 until P4, it is impossible to place a domino vertically next to B1

nor is it possible to place a domino vertically next to Cn. If we were to place a
domino horizontally at the low end at B1 (thus forming a bottom-left corner),
then we need to place another domino on top that violates P4. Hence the only
dominoes that are possible are depicted in Figure 12a. We end up with the
other type of corner (where the vertical domino is on the side) and we can again
analyze where to place the next domino in the corner next to B1 and below C1,
and next to Cn and below Cn−1. After analyzing the possibilities and ruling
out those that violate P4 we end up with the situation depicted in Figure 12b.
After continuing this way, we see that we construct two ‘lines’, one originating
from each corner. It is necessarily the case that these two lines will intersect!

© 2025 the author(s) 12 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

On Invariance and Inconsistency

A1 A1 A2 A2 · · · An−1 An−1 An An

B1 C1 C1 Cn−1 Cn−1 Cn

B1 Cn

(a) Second situation

A1 A1 A2 A2 · · · An−1 An−1 An An

B1 C1 C1 · · · Cn−1 Cn−1 Cn

B1 D1 · · · En−1 Cn

D1 En−1

(b) Third situation

Figure 12. Stepping towards the impossibility result.

.
.

1 1 A A

2 3 3 B

2 4 D B

4 D

Figure 13. Last part of the impossibility result.

In Figure 13 we see the two lines coming diagonally out of the top-left corner
and the top-right corner intersect. The way this plays out is as follows: we start
with the corner consisting of dominoes {1, 2} (the top-left corner) and dominoes
{A,B} (the top-right corner). Then we necessarily place domino 3, but this
takes the same place as we would take when we would place a domino in the
other corner. We now have two corners, but they share a domino, namely the
dominoes {2, 3} (the top-left corner) and the dominoes {3, B} (the top-right
corner). We then place 4 and D in the only way possible inside these corners,
but we see that this gives us a parallel pair of dominoes in a 2-by-2 square.

Summarizing, the argument goes as follows. If there are two corners on the
board that induce a ‘diagonal line’ that intersect, this must give rise to a pair of
parallel dominoes. Hence we can not have both a top-left corner and a top-right
corner on the board. However, for every n-by-n board tiling it is necessary to
have both a top-left corner and a top-right corner. Hence we cannot have a
tiling of the 8-by-8 that also has no parallel dominoes.

© 2025 the author(s) 13 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

On Invariance and Inconsistency

5 Conclusion

We have now seen two example puzzles, which we phrased by means of asking
whether we can come up with a program that satisfies certain requirements. In
the first example (Section 3) we have seen that the program’s requirements can
(1) be stated formally, and (2) a final state was imaginable that satisfies the end
goal, but (3) there was no correct program that reaches the final state. In the
second example (Section 4) we have seen that the requirements themselves can
(1) be stated formally, but already that (2) a final state was not imaginable that
satisfies the end goal. If there is no final state that satisfies the requirements, it
is impossible to write a correct program. This must be a valid conclusion, since
each program only moves from state to state, and there does not even exist a
state that satisfied the requirements.

All this serves to show is that program correctness is a difficult subject. It
shows that sometimes it is ‘easy to ask’ but ‘difficult to deliver’. Extensive
analysis of a problem is required to obtain (1) a formal description of the prob-
lem, and (2) proof that the requirements are consistent. Even before one starts
writing a program, one already has to face an undecidable problem: namely, to
check that the requirements are consistent! And we have seen a concrete exam-
ple that this is not always the case—even when the problem looks simple. If
we then have requirements that are satisfiable, we then face the second difficult
problem: does there exists a correct program? We have seen that, no, this is
not obvious either. To show that there does not exists a correct program, we
need to formulate an invariant that any program preserves but which the final
state violates. On the other hand, whenever there exists a non-trivial program
(i.e. involving a loop) we also face a difficult problem: to prove it correct requires
us to come up with an invariant as well.

This finally gives us two slogans:

To show a program is correct, requires one to find an invariant.
To show there is no correct program, also requires one to find an invariant.

and

Correctness is impossible to attain if the requirements are inconsistent.

Bonus questions.

1. Can you analyze the problem of swapping rows and columns also in the
context of concurrent client programs?

2. What about tiling the board without parallel dominoes when the bound-
aries are glued to each other in weird (non-Euclidean) ways?

© 2025 the author(s) 14 CC-BY-4.0

https://creativecommons.org/licenses/by/4.0/

On Invariance and Inconsistency

References

[1] Anany Levitin and Maria Levitin. Algorithmic Puzzles. Oxford University
Press, 11 2011. doi:10.1093/oso/9780199740444.001.0001.

© 2025 the author(s) 15 CC-BY-4.0

https://doi.org/10.1093/oso/9780199740444.001.0001
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Preliminaries
	Invariants
	Logical specifications
	Conclusion

