
New Foundations for Separation Logic

H.A. Hiep

May 23, 2024

© 2024 Hans-Dieter A. Hiep

ISBN 978-90-831826-1-2 (paperback)
ISBN 978-90-831826-2-9 (e-book, PDF without DRM)
ISBN 978-90-831826-3-6 (digital artifact)
NUR 123 Exacte vakken en informatica (hoger onderwijs)
Engelstalig

Alle rechten voorbehouden.
Alle intellectuele eigendomsrechten, zoals auteurs- en databank-rechten, ten aanzien
van deze uitgave worden uitdrukkelijk voorbehouden.
Behoudens de in of krachtens de Auteurswet gestelde uitzonderingen, mag niets uit
deze uitgave worden verveelvoudigd, opgeslagen in een geautomatiseerd gegevens-
bestand of openbaar gemaakt in enige vorm of op enige wijze, hetzij elektronisch,
mechanisch, door fotokopieën, opnamen of enig andere manier, zonder voorafgaande
schriftelijke toestemming van de auteur.

Omslag: Ulysses and the Sirens, John William Waterhouse (Google Art Project)
Typografie door auteur zelf met behulp van LATEX2ε.

Uitgave: eerste uitgave
Oplage: 64
Aantal pagina’s: 256
Drukkerij: proefschriftenprinten.nl (Kelvinstraat 27, 6716 BV, Ede)

New Foundations for Separation Logic

Proefschrift

ter verkrijging van

de graad van doctor aan de Universiteit Leiden,

op gezag van rector magnificus prof.dr.ir. H. Bijl,

volgens besluit van het college voor promoties

te verdedigen op donderdag 23 mei 2024

klokke 13:45 uur

door

Hans-Dieter Anton Hiep

geboren te Hoorn

in 1991

Promotor:
prof.dr. F.S. de Boer

Co-promotores:
dr. C.P.T. de Gouw (Open Universiteit)
dr. A.W. Laarman

Promotiecommissie:
prof.dr. J.-P. Katoen (Universiteit Twente, RWTH Aken)
dr. J.A. Pérez (Rijksuniversiteit Groningen)
dr. H. Basold
prof.dr. M.M. Bonsangue
prof.dr. H.C.M. Kleijn
prof.dr. A. Plaat

Part of the IPA Dissertation Series: No. 2024-04
The research presented in this dissertation was carried out at the Dutch national

research laboratory for mathematics and computer science Centrum Wiskunde &
Informatica (CWI) in Amsterdam, and the Leiden Institute of Advanced Computer
Science (LIACS) of Leiden University, under the auspices of the research school
IPA (Institute for Programming research and Algorithmics).

The author was partially supported by funding from NGI ASSURE, a fund
established by NLnet with financial support from the European Commission’s Next
Generation Internet programme, under the aegis of DG Communications Networks,
Content and Technology under grant agreement No. 957073.

Abstract

This thesis presents new foundations for separation logic, an important field within
the formal sciences such as theoretical computer science. Around the turn of
the millennium, separation logic was introduced by J.C. Reynolds with the goal
to make reasoning, about the correctness of computer programs that work with
so-called ‘pointers’, more efficient than earlier formal methods. Reynolds’ method
and the other earlier methods are both extensions of the proof system introduced
by C.A.R. Hoare for reasoning about the correctness of simple while-programs.
The essence of Reynolds’ initial work, which was researched and put into practical
use by many other scientists, consists of two extensions of the work initiated by
Hoare: the first extension adds to first-order predicate logic two new propositional
connectives (the so-called separating conjunction and separating implication); the
second extension adds to Hoare’s program logic new proof rules for reasoning about
(the primitive operations of) pointer programs. These primitive operations are used
for reading memory (‘lookup’), writing memory (‘mutation’), reserving memory
(‘allocation’), or freeing memory (‘deallocation’).

The new foundations are presented in two parts. The following paragraphs
summarize the contents of these two parts. The first part contains a model-theoretic
and proof-theoretic exploration of the classical interpretation of separation logic,
the logic used in Reynolds’ assertion language. This first part proves a result
for separation logic, that is as fundamental as the corresponding result by Gödel
in first-order logic—the completeness theorem. The second part contains a new
interpretation of Reynolds’ program logic, and introduces—for the first time—so-
called dynamic separation logic. Dynamic separation logic is an extension of
dynamic logic by D. Harel. Using dynamic separation logic, an alternative weakest
precondition axiomatization and strongest postcondition axiomatization is given.
These alternative axiomatizations, in contrast to earlier axiomatizations of Reynolds’
program logic, do have the property of gracefulness: the earlier axiomatizations
of Reynolds’ program logic are not graceful, because they unnecessarily increase
the complexity in the use of separating connectives when generating weakest
preconditions or strongest postconditions.

v

vi

Chapter 2 of the first part demonstrates the inadequacy of the standard in-
terpretation of separation logic, because it lacks compactness. This chapter also
introduces a new interpretation, called the full interpretation of separation logic,
that is based on the possibility of evaluating formulas also with respect to infinite
heaps. However, also this full interpretation is inadequate. We continue with a
search for necessary and sufficient conditions for embedding the standard interpre-
tation into the full interpretation, and we introduce so-called relational separation
logic with the goal to compare separation logic with second-order predicate logic.
It is an interesting fact that the full interpretation of separation logic lies close
to the standard interpretation of second-order logic: expressivity of a so-called
binding operator is sufficient for showing that these two logics coincide.

Chapter 3 of the first part introduces a proof theory with a corresponding
new interpretation of separation logic that is based on first-order definable heaps.
This new interpretation allows us to show that the resulting proof system is in
fact adequate. The proof system is presented as a sequent calculus, but also a
second proof system is introduced in the natural deduction style. The sequent
calculus is sound and complete with respect to first-order definable heaps. The
natural deduction calculus is sound and complete with respect to structures that
satisfy a semantic comprehension condition. The second proof system works with
more general formulas than what is allowed in separation logic, by introducing a
connective that is closely related to the binding operator of the previous chapter.

Chapter 4 of the second part comprises: general interpretations of separation
logic, and a class of structures based on so-called memory models. The latter
class is used in the proof of soundness and relative completeness of Reynolds’
program logic. We arrive at dynamic separation logic by introducing a program
modality in the assertion language. We research an alternative weakest precondition
axiomatization and strongest postcondition axiomatization for classical separation
logic. This work directly leads us to solving an open problem, where it is the
question whether the global axioms can be inferred from the local axioms and the
frame rule of Reynolds’ program logic but without additionally using the separating
implication connective. Our method is robust, since it can also be applied to obtain
a weakest precondition axiomatization and strongest postcondition axiomatization
for intuitionistic separation logic (this result is not yet published).

The thesis also includes an extensive appendix with background material,
concerning higher-order predicate logic and Hoare’s program logic, that is needed
to understand and appreciate the above novel results. The appendix also describes
an accompanying Coq formalization of the soundness and completeness of the
alternative axiomatizations of Reynolds’ program logic, that aims to increase the
trust one may place in the validity of the results.

Preface

This thesis is the result of my promotion trajectory, that ran from 1 November 2018
until 31 October 2023 (5 years), executed at two institutes: Centrum Wiskunde &
Informatica (CWI) in Amsterdam from 1 November 2018 until 31 October 2020
(2 years); and Leiden Institute of Advanced Computer Science (LIACS) in Leiden
from 1 November 2020 until 31 October 2023 (3 years). At the CWI, I was part of
the Formal Methods group (FM), and at LIACS, I was part of the theory group.
The CWI provided me with office space for the entire duration of the trajectory.
The promotion was initiated by Frank de Boer (promotor) and Stijn de Gouw
(co-promotor), with the initial goal of verifying standard libraries of the Java
programming language using the KeY system.

The first years were quite productive and this would not be possible without
Frank giving me a lot of freedom to explore, to develop independently, and to take
initiative. We often had productive meetings, and structured our collaboration by
means of writing papers together. I also collaborated with Stijn’s master student,
Olaf Maathuis, while we were both learning how to use the KeY system to verify
Java’s LinkedList class. Jinting Bian joined our group at CWI, and I helped her
with learning how to use KeY so we could collaborate on Java library verification.

In these initial years I also submitted grant proposals, and collaborated with
Benjamin Lion, Kasper Dokter, Roy Overbeek, and Farhad Arbab. Some of
the grant proposals were accepted: a new project with the code name Reowolf
started that was later extended in a project named Reowolf 2.0. As part of these
projects we were able to hire scientific programmers, Christopher Esterhuyse and
Max Henger, with whom I collaborated on completing the deliverables of the
projects. Christopher convinced me to use the Rust programming language for
the project, which I had not used before. This allowed me to gain more practical
experience with programming under a linear typing discipline. Max has taught me
to take the concerns of efficiency and scalability more seriously than I did before.

From the start, I was involved in teaching in the Program Correctness course
at Leiden University. In this course we explain Hoare’s logic to bachelor students,
both for simple while-programs and programs with recursive procedures, and we
practice with a simplified version of the KeY system. Later on, teaching both
the Program Correctness and Concepts of Programming Languages courses also
became my responsibility. For the latter course, I redeveloped the course material
and recorded an on-line lecture video series.

vii

viii

After years of progress in this initial direction and several semesters of involve-
ment in teaching, Frank invited me to collaborate on an article, submitted to the
Association for Computing Machinery (ACM) journal Transactions on Program-
ming Languages and Systems (TOPLAS), on the completeness and complexity of
a Hoare-like logic for reasoning about call-by-value procedures. For that article,
I contributed the Coq formalization proving several tricky supporting lemmas
and came up with the idea of applying techniques from proof theory to do proof
normalization in Hoare’s logic to prove the complexity result that correct programs
have linear proofs. On my own initiative, I presented the basis of this work at the
PhD Day organized by the VvL (the Dutch Association for Logic and Philosophy
of the Exact Sciences) on July 1st, 2022.

Afterwards, I wanted to change the direction of my own research towards the
investigation of the foundations of separation logic (while continuing collaboration
with Jinting Bian on verifying Java libraries, continuing work on the Reowolf
project, and continuing teaching Concepts of Programming Languages and Program
Correctness). There were several reasons for considering this change of direction:
firstly, we received numerous anonymous reviews in response to our earlier articles
about Java program verification that mentioned separation logic as related work.
Secondly, on several occasions Frank indicated he was a contrarian in this subfield,
of separation logic, so I was inclined to become a meta-contrarian1. Lastly, I had
many interesting discussions about separation logic during the PhD Day organized
by the VvL. Although at that time I had only superficial knowledge, I started to
wonder: what the hell is separation logic, really? Already, I had done several years
of work of a practical nature, in actual Java program verification, and in the mean
time I had learned more about higher-order logic, set theory, model theory, proof
theory, and foundational issues in mathematics. Now I wanted to do more work of
a theoretical nature in mathematical logic, and continue my work on formalizing
Hoare’s logic.

So I convinced Frank that it was a good idea to investigate separation logic.
Our approach would be from a foundational point of view, and my goal was to
understand what were the issues in separation logic that Frank refrained from
articulating in the past twenty years or so. What emerged was a symbiotic
relationship between me and my promotor: I gladly took Frank as a confident
oracle, and saw myself as a skeptical verifier. In this period we worked together
intensively, often spending many hours a day discussing next to a whiteboard. Also
I used the Coq proof assistant to meticulously check my work. But at other times,
the roles reversed, and I saw myself as the oracle while Frank was verifying my
‘nonsense’, critically and skeptically questioning my position until we obtained
something reasonable. The benefit of our symbiosis was that we discovered many
of our own mistakes, that we were able to repair ourselves. As such, I was deeply
involved in the discovery, the refinement, the verification, and the presentation of
the subject matter that is presented in this thesis. Frank and I collaborated on a

1Thanks to Benjamin for explaining to me why I am an ‘intellectual hipster’: whereas Frank
is a contrarian (i.e. opposing separation logic), I took an opposite position in Frank’s contrariness
(thus opposing Frank’s opposition, in defense of separation logic).

ix

paper until no longer there would be any ground to oppose each other, and then
we involved my first co-promotor, Stijn, to check the intermediate paper—whether
what we did made sense. Finally, after this thesis was written, also my second
co-promotor, Alfons Laarman, was involved to check whether the thesis as a whole
made sense. I found this way of working to be very productive.

<rant> Whereas the collaboration between me and my promotor and co-pro-
motors was very productive, I found that there was also a source of counter-
productivity: the anonymous reviewers of our articles about separation logic. As
mentioned earlier, we had structured our collaboration by means of writing articles
that were submitted for presentation at several conferences. However, that last
part, submission to conferences and subjecting our articles to objective anonymous
reviewers, was severely frustrating our productivity. Contrary to the positive
symbiotic relation between me and my promotor, I had experienced the relation
between me and my anonymous reviewers as negative, even alienating. It felt I was
in a toxic burn pit that slowly burned me out. The epitome of toxicity was when a
reviewer was rejecting, insistingly, our article on the basis of a counter-example
to our result, that was also a counter-example to Gödel’s completeness theorem!
Communication with anonymous reviewers was very limited and the reviewers
did not respond to requests to discuss the matter further.</rant> In an attempt
to prevent any confusion about what the background material is, I spent several
months writing the appendix.

In the end, I am deeply indebted to Frank for his encouragement: to continue
to defend these new foundations for separation logic, and to regard less of negative
and discouraging comments by anonymous reviewers. I am also delighted by the
fact that Stijn and Alfons were always able to give useful and constructive feedback
on papers or this thesis. I am grateful to all the members of the PhD committee
for reading a preliminary version of this thesis and giving valuable feedback that
has lead to an improved and final version.

x

Acknowledgments

I wish to thank, besides the people already mentioned in the preface, also the
following people for providing a most pleasant working environment and/or their
(direct or indirect) support of me while I was working on this thesis:

Vlad Serbanescu, Keyvan Azadbakht, Jana Wagemaker, Jurriaan Rot, Jan Rut-
ten, Luc Edixhoven, Sung-Shik Jongmans, Carl Schulz, Maarten Dijkema, Marco
Floor, Henk Roose, Emil Gorter, Vera Sarkol, Annette Kik, Minnie Middelberg,
Nada Mitrovic, Doutzen Abma, Dick Broekhuis, Margriet Brouwer, Martine Anholt
Gunzeln, Susanne van Dam, Ramona Rijff, Remco Westra, Krzysztof Apt, Jos
Baeten, Erik de Vink, Marten van Dijk, Chenglu Jin, Niloufar Sayadi, Chao Yin,
Sirui Shen, Steven Pemberton, and all other collegues at the CWI;

Mike Preuss, Walter Kosters, Hendrik Jan Hoogeboom, Rudy van Vliet, Jean-
nette de Graaf, Mitra Baratchi, Frank Takes, York-kam Kwok, Esme Caubo, Joyce
Glerum, Riet Derogee, Chris Flinterman, Caroline de Bruin, Hui Feng, Lieuwe
Vinkhuijzen, Luc Edixhoven, Dalia Papuc, Tanjona Ralaivaosaona, Miguel Blom,
Tim Coopmans, Sebastiaan Brand, and all other collegues at LIACS;

Wan Fokkink, Jasmin Blanchette, Herbert Bos, Robbert Krebbers, Frits Vaan-
drager, Marieke Huisman, Loek Cleophas, Thomas Neele, the late Eelco Visser,
Wolfgang Ahrendt, Reiner Hähnle, Bernhard Beckert, Richard Bubel, Mattias
Ulbrich, Einar Broch Johnsen, Silvia Lizeth Tapia Tarifa, Volker Stolz, Violet Ka I
Pun, Crystal Chang Din, Dominic Steinhöfel, Eduard Kamburjan, Michael Kirsten,
Alexander Weigl, Lars Tveito, Asmae Heydari Tabar, Alexander Knüppel, Michiel
Leenaars, Mirko Ross, Stephen Farrell, Chris Verhoef, Bas van Bockel, and all
other (international) collegues I worked with;

Wesley Shann, Daniel Roos, Lazlo de Wijs, Oualid Azzeggarh, Zahir Bingen,
Andy Tatman, Wessel van der Goot, Renz Roos, Roos Wensveen, Dominique
Lawson, Perri van den Berg, Dirck van den Ende, and all my other students;

Joris Bierkens, David van Oldenhof, Anders Rehult, Diederik Malien, Xavier
Boot, Jim Lemmers, Suzanne Kraaij, Laurens van Kempen, Micha Klamer, Koen
van Veen, Eric Ruts, Jacob Kooijman, Alan Hopman, Thijs Louwman, Maarten
Dinkelberg, Thijs Dekker, and all my other friends;

Mara and Pandora Visser, Jorien van den Heuvel, my brother, and my parents;
and all others I forgot to mention here.

xi

xii

Contents

1 Introduction 1
1.1 Pointer programs . 6
1.2 Why separation logic? . 10
1.3 Why new foundations? . 16
1.4 Scientific contributions . 23

2 Model theory of separation logic 27
2.1 Syntax of separation logic . 32
2.2 Standard semantics . 35
2.3 Full semantics . 40
2.4 Embeddings . 47
2.5 Relational separation logic . 51

3 Proof theory of separation logic 57
3.1 Sequent calculus . 59
3.2 Soundness and completeness . 64
3.3 Natural deduction . 68
3.4 Soundness and completeness . 72
3.5 Discussion . 76

4 Reynolds’ logic 81
4.1 General semantics and memory models 84
4.2 Semantics of pointer programs . 90
4.3 Standard proof system . 95
4.4 Dynamic separation logic . 100
4.5 Alternative axiomatizations . 110

5 Conclusion 113

xiii

xiv CONTENTS

A Classical (higher-order) logic 123
A.1 Assertion language . 125
A.2 Basic model theory . 132
A.3 Basic proof theory . 139
A.4 Soundness and completeness . 152
A.5 Adding back terms . 152

B Hoare’s logic 159
B.1 Syntax of programs . 161
B.2 Operational semantics . 166
B.3 Denotational semantics . 173
B.4 Axiomatic semantics . 176
B.5 Recursive procedures . 186

C Intuitionistic separation logic 193
C.1 Standard semantics . 193
C.2 Intuitionistic Reynolds’ logic . 194

D Formalization in Coq 201
D.1 Alternative axiomatization . 201
D.2 Natural deduction . 203

Bibliography 207

List of Publications 225

Summary 229

Samenvatting 231

Curriculum Vitae 233

Chapter 1

Introduction
In the well-known 1960s article The unreasonable effectiveness of mathematics in
the natural sciences by E.P. Wigner [225], and in the 1980 article The unreasonable
effectiveness of mathematics by R.W. Hamming [106], the authors argue that
mathematics allows for the formulation of theories—useful for making predictions
in the natural sciences, such as physics and astronomy—and as such is the correct
language in which to express concepts of regularity in patterns of observations
(see also [41]). We, humans, tend to prefer those theories that can elegantly and
beautifully explain many phenomena, accurately. Wigner modestly suggests that
every theory is wrong in some way, and that it is just a matter of time until
it is discovered what is wrong about any theory; eventually the better theories
supersede the worse ones. Simply put, this allowed us to progress from Galileo’s
falling bodies, to Newton’s mechanics, to Einstein’s relativity. The reason for
the success of mathematics was ‘mysterious’ for Wigner, and remained elusive for
Hamming.

In 2001, in a similar vein as Wigner and Hamming, J.Y. Halpern, R. Harper, et
alia [105] argue in their article On the unusual effectiveness of logic in computer
science, that it is not elegant mathematics, per se, that drives progress; the driving
force of progress in (theoretical) computer science, they argue, is mathematical
logic, as it developed from the foundational crisis of mathematics late 19th century
until early 20th century: “logic has had a definite and lasting impact” on computa-
tional complexity, relational databases, typed programming languages, knowledge
representation in distributed systems, verification of semiconductor designs, among
many other areas in computer science. Contrary to Wigner and Hamming, these
authors do offer an explanation for the unusual effectiveness of logic. Essentially,
their argument boils down to recognizing the difference between the natural sciences
and computer science—in the sense that most knowledge in computer science is
‘synthetic’: the organization of computing, down from the design of semiconductors,
processor architectures, programming languages, operating systems, all the way
up to the working of the Internet and the world-wide applications running atop:
everything is entirely man-made. Simply put, since logic is a way of organizing
human thought, it as such offers a suitable framework in which the development of
computer science can progress.

1

2 CHAPTER 1. INTRODUCTION

One successful application of logic in computer science is in the subject of
program verification,1 in which one proves properties of programs in a similar way
as one would do deductive reasoning in logic. Program verification rapidly gained
interest by the seminal articles Assigning meanings to programs by R.W. Floyd
in 1967, and An axiomatic basis for computer programming by C.A.R. Hoare
in 1969, where in the latter “sets of axioms and rules of inference which can be
used in proofs of the properties of computer programs” are introduced [84, 118].
Also many books on this subject have been written in the past fifty years, see
e.g. [71, 61, 100, 86, 10]. By verifying the correctness of a program one establishes
that a program’s behavior has certain desirable properties. The correctness of a
program also depends on the correctness of the compiler or interpreter necessary
for running the program, the operating system on which the (compiled) program
depends, the processor architecture, and ultimately the semiconductor design of
all the components in a computing machine. If all of these man-made entities are
correct, established with mathematical certainty, then Hoare claims that “it will
be possible to place great reliance on the results of the program, and predict their
properties with a confidence limited only by the reliability of the electronics.” Thus,
what Hoare suggested, in a clear way, was that the subject of program verification
is foundational to computer science, since it reduces the question of the reliability
of our man-made organization of computing ultimately into theories of nature itself:
the physical properties of circuits that realize computing.

Although program verification is a deductive method, there is an alternative—
a more experimental method: to try a program on a number of different test
cases, and see whether the observed program behavior is desirable. The study of
this process, called program testing, also developed into a respectable subject of
computer science [160, 7, 130]. However, there is a limitation to program testing,
since from trying out a (finite) number of test cases one cannot always conclude
to have ruled out all programming errors, i.e. testing does not always guarantee
correctness. Hence, in practice, some programming errors remain, since the cost of
discovering all programming errors by means of testing is too large. Discovering
programming errors when programs are already put into use might even be more
problematic, since then those errors could be costly to remove [104, 128, 129], and
cause (irreversible) effects and damage in the mean time [234]. Hoare posits the
important role that program verification can play, by prophesying that “the cost of
error in certain types of program may be almost incalculable—a lost spacecraft, a
collapsed building, a crashed airplane, or a world war.” [118] Hoare wrote this in
the middle of the cold war, around the same time the U.S. accomplished the first
manned moon landing.2

A crisis in computer science emerged, later dubbed the software crisis, that
started late 1960s [183] and lasted until the turn of the millennium [117]. Although
computing machinery was improving at an incredibly rapid pace, problems surfaced
with the development of software: early estimates indicated that professionally
developed programs could contain many programming errors, between one in every

1Alternatively: program correctness, software correctness, software verification
2See also https://www.vpro.nl/speel~POMS_VPRO_212868~denken-als-discipline~.html

https://www.vpro.nl/speel~POMS_VPRO_212868~denken-als-discipline~.html

3

hundred to one in every thousand lines of code [117]; recent estimates confirm this
still holds today [233, 198]. Such estimates are especially worrisome in safety-critical
software, applied in important and impactful high-tech industries such as energy,
transportation, and military [144]. The idea that a small programming error in
these kinds of applications can have devastating and far-reaching consequences is
surely frightening. To treat the ailments of the software crisis, new programming
languages and techniques were developed, resulting in the so-called high-level
programming languages [30]. The design of high-level programming languages
incorporated (lightweight) verification techniques [226, 124, 80], such as type
checkers and user-definable data types. Also new ways of organizing the software
production endeavor were introduced, and the people involved in these new software
development processes, taking care of producing high-quality software, were called
software engineers.

And with great success: at the end of the software crisis, also Hoare recognized
that most safety-critical software had acceptable reliability even though most
software engineers did not apply program verification as he envisioned it in 1969.
In fact, while reflecting on the role program verification can play, Hoare openly
admitted that there was a “non-fulfillment of prophecies of doom. The history of
science [...] is littered with false predictions and broken promises; indeed they seem
to serve as an essential spur to the advancement of human knowledge; and nowadays,
they are needed just to maintain a declining flow of funds for research.” [117] Hoare
wrote this in the middle of the roaring nineties, in stark contrast with his earlier
sentiment.

However, if we have a look at the case for program verification today, have there
been fundamental shifts in the playing field of software development in the past
thirty years or so? Should we take novel ‘prophecies of doom’ [204] with a grain of
salt? Or, are we on the verge of collapse, and is there again a need to reinvigorate
the practice of rigorous program verification [103]? Can we be realistic about the
use of program verification—neither too optimistic nor too pessimistic [137, 92]?
We can not expect to obtain reasonable answers to all of these questions, but we
can recognize the following rough strokes on the canvas of recent computer history:

• In the last thirty years, we have seen the immense growth of the Internet
(including its associated costs such as energy usage and corresponding CO2

emissions [195]), and with it the deployment of many world-wide applications
running on top such as the Web (including associated downsides, which are
hard to specify formally, such as the spreading of misinformation [60]). As
a result, societies in developed countries have witnessed, especially now we
are beyond the horizon of 2020, the so-called digital transformation of the
past decades. This incredible development was in part caused by, but also
affected, advancement in software development. Whereas previously it was
costly to replace faulty software, nowadays software is easily updated through
the Internet, leading to reckless development strategies such as “move fast
and break things.” [219] In fact, many, often centralized, applications of
today critically rely on the correct functioning of the Internet. However, this
brings new risks too [150]: what if part of the Internet is shut down—either

4 CHAPTER 1. INTRODUCTION

accidentally due to a misconfiguration [146], due to (geo)political pressures
[221, 76], or maliciously due to a coordinated attack on critical routing
infrastructure [126]? Can program verification play a role in the discovery of
fundamental flaws in critical software that is essential to keep the Internet
connected and its applications running?

• Complementary to increases in connectivity, we have also seen increases in
usage and complexity of software in many different industries, known by
the popular phrase “software is eating the world.” [8] As such, the potential
impact of programming errors is only increasing. A new dimension of interest
is cyber security [197], and in particular finding (and sometimes correcting)
so-called zero-day exploits [224]. An exploit allows malicious parties to
severely disrupt software-dependent industries, such as finance, healthcare,
and education [184], and well-known examples of abusing programming errors
are ransomware attacks [25]. Especially when the development of software
is open-source—allowing anyone to study the source code of software—there
may be an increased risk that programming errors are known to attackers
but not to the authors of the software [116], while for open-source software
critical patches are released faster than for closed-source software [194]. Can
program verification play a role in discovering these zero-day exploits?

• With the uptake of large language models for generating programs [229],
the question of correctness may become more important than before: since
no longer an educated, intelligent human—who is concerned about qualities
such as correctness—is writing programs, but instead an artificial intelligent
machine is writing it. This may lead to an increase of productivity in software
development, but also to a decline of the quality of programs, in the coming
decade. Can program verification play a role in the post-hoc verification of
programs [102], e.g. generated by large language models [72]?

• As a consequence of the digital transformation, also critical governmental
processes are increasingly handled by software, such as software that is used to
count votes and compute results for elections,1 and software used in processing
taxes and detecting fraudulent citizens. It is of great public interest that all
software involved in these critical processes behave correctly with respect
to specifications that formalize the relevant laws. Since governments bear
responsibility to the public, correctness of such software should be established
beyond any rational doubt. Can program verification play a role in critical
governmental software, such as election software or software that is used to
process taxes?

Program verification can play a (modest) role in all of these issues, but its success
may vary: although there are numerous success stories [101, 123], we shall discuss
some technical challenges which have to be tackled before program verification can
be actually applied in solving these issues, and discuss some limitations inherent to
program verification in general [193, 174].

1See https://nos.nl/artikel/2490218

https://nos.nl/artikel/2490218

5

In this thesis, we study program verification systems, also called theories of
program correctness: a systematic approach to study the correctness of programs.
We distinguish the following components of a program verification system:

• the proper programming language is used for describing programs themselves,

• the proper specification language is used for specifying positive or negative
properties of program behavior,

• the proper deduction system is used to verify whether a program is correct,
by annotating programs with specifications.

Program verification amounts to showing that the correctness (with respect to
specifications in the specification language) of a program (in the programming
language) can be deduced (in the deduction system). For a program verification
system to be adequate, it needs to have the following qualities:

• all the properties that are potentially observable in reality can be described
as well (expressiveness),

• the properties that are deductively verifiable of a program also hold of the
program when really executed (soundness),

• all the properties that are observed of all programs that are really executed
can also be deductively verified (completeness).

To be able to assert that a program verification system has these qualities, one
would need to investigate:

• the programming language and specification language have an unambiguous
and formalized meaning (semantics),

• the verification system is based on an accurate theory of program behavior
as would be observed when executing programs in the real world (modeling),

• the verification system itself contains no error (consistency).

Furthermore, for a program verification system to be usable, it needs to have the
following qualities:

• many important classes of properties can be described and reasoned about in
a short and straightforward way (complexity),

• a largest as possible part of the verification process can be performed auto-
matically (effectiveness).

Recalling E.P. Wigner, that every theory is wrong in some way: in fact, no program
verification system exists that satisfies all these qualities perfectly. V.R. Pratt
investigated the semantics underlying program verification systems [179]. Already
the choice of programming language and specification language have significant

6 CHAPTER 1. INTRODUCTION

influence on the success of a program verification system. A too simplistic specifica-
tion language may not be expressive enough to state the properties of a program, as
investigated by S. Kamin [133]. A programming language may also be too powerful
and have a combination of features that leads to incomplete program verification
systems, as investigated by E.M. Clarke, Jr. [51, 52]. In fact, many program
verification systems can not be fully automated [22, 53], or only automated in
certain circumstances [99], but there are also program verification systems which
can be fully automated [127]. Sometimes there are subtle interactions between
different qualities, such as expressiveness and completeness, as investigated by
J.A. Bergstra and J.V. Tucker [21], M.R. Artalejo [13], and others [149, 14]. Going
further, a small mistake in modeling the behavior of programs could lead to a
theory that makes predictions about program behavior that no longer has a useful
relationship with the behavior of programs in the real world.

The task of designing a program verification system is thus difficult. We first
discuss the design decisions taken in this thesis: we focus on pointer programs as
programming language (Section 1.1), and focus on separation logic as specification
language (Section 1.2). As soon as we have settled on these components, we discuss
the deduction systems and the aforementioned qualities: expressiveness, soundness,
completeness, and complexity (Section 1.2). However, there are significant gaps
in the academic literature, and we argue why new foundations of separation logic
are needed (Section 1.3). Finally, the scientific contribution, of filling in these
gaps, and the larger scientific context of the work presented in this thesis is given
(Section 1.4).

1.1 Pointer programs

One of the positive outcomes of the software crisis was the development of the
so-called high-level programming languages. For example, in the early 1970s,
the C programming language was designed [192] to be a high-level programming
language, and it—together with the operating system Unix that was rewritten
in it—became widely used in the decades that followed. Also in other operating
systems, such as the kernel of Windows, Linux, and (forks of) BSD, the C language
is (predominantly) used. Later programming languages, such as C++ [206] around
1980, Python [218] around 1990, and Java [175] around 1995, were even higher-level,
by introducing features such as object-orientation and garbage collection, and also
became well known and widely used—especially in application programming and
on the Web. These four are the topmost widely-used programming languages [141],
according to TIOBE Programming Community index in 2023.

To apply techniques of program verification to these practical languages, one
has to design a program verification system that is tailored to each specific feature
of each specific programming language. But, the syntax and semantics of each
programming language differ significantly and require extensive modeling. In fact,
even between different versions of the same language there could be many, possibly
incompatible, differences in syntax and semantics. For example, the C++ language
originally was an extension of the C language, but in decades time the two languages

1.1. POINTER PROGRAMS 7

have significantly diverged in their semantics of those parts of the syntax that
is still shared by both languages. As such, a verification system is tailored to a
specific version of a programming language, and it is costly to keep up with the
rapid onset of new versions [123].

On top of that, high-level programming languages have many diverse features:

• type systems with primitive types, reference types, subtypes, etc.

• object-oriented features such as (partial) encapsulation and reflection,

• static typing, dynamic typing, interfaces, dynamic dispatch, etc.

• complex rules for type coercions or conversions,

• expressions with unspecified evaluation order that can have side-effects,

• complex control flow and constructs for dealing with exceptions,

• manual, semi-automatic or garbage-collected memory management,

• concurrency features and multi-threading,

• raw or safe or lock-protected memory access,

• interaction with input/output devices and volatile memory,

• a large standard library.

These language features are not perfectly orthogonal, and may interact with each
other in often subtle ways. Ideally, every widely-used programming language should
also come with a fully-fledged program verification system, a so-called ‘verification-
oriented programming language’ [157]. But this is not yet the case today: the
widely-used programming languages lack such system. As such, pragmatically, in
practical program verification systems for widely-used programming languages one
restricts attention only to a subset of features, notably those features that are the
cause of the most problematic programming errors [95, 2].

One such practical verification system is the KeY system that can be used to
verify the correctness of Java programs [3]. The KeY system extensively models
many features of the Java programming language, but it only supports single-
threaded Java programs written in an older Java version that does not have generic
types. Although not feature-complete, the verification system is still useful in
practice, since, for example, it can successfully be used to discover bugs in Java’s
standard library: uncovering a crashing bug in the sorting algorithm [65, 66, 64],
a twenty year old overflow bug in the linked list data structure [115, 114], and a
bug in the BitSet class [208]. However, a known limitation of KeY is that, while in
principle possible, practical reasoning about complex pointer structures is often
difficult and time-consuming [113, 24, 207].

Such pointer structures are a common aspect of all of today’s widely-used
programming languages. That programs necessarily interact with working memory
is a consequence of current computer architectures [200], in which the digital

8 CHAPTER 1. INTRODUCTION

representation of values are stored at locations in random access memory (RAM).
Pointer structures emerge as soon as the location (or address) of values are treated
as values that can be stored in memory. The difficulty of reasoning about pointer
structures comes from the fact that the same location in memory, where a value
is stored, may have different names, i.e. can be identified by different expressions
[32]. In that case, all the (different) names of the same location are called aliases.
Every time the value of a location is updated, one would need to analyze every
expression to see whether it refers to the updated location or not. This process is
called alias analysis, which is the main source of difficulty in reasoning about the
correctness in widely-used programming languages, such as Java.

As such, in this thesis we focus on the design of a system that is suitable for
reasoning about pointer structures, but without covering all the specific features
of each individual programming language or architecture. We investigate an
abstract program verification system, that works well with abstract programs
that manipulate pointer structures, in such a way to satisfy as many qualities of
program verification systems as possible—expressivity, soundness, completeness,
and complexity. The abstract system can be further tailored or integrated into
practical verification systems for verifying properties of concrete programs. We
refrain from doing the latter in this thesis, and shall not study the design or
implementation of concrete program verification systems: rather, by focusing on
the abstract, we offer a solid foundation for the future development of practical
tools, thereby allowing those tools to benefit from satisfying the qualities, including
completeness, too. For example, it is envisioned that the results of this thesis could
serve as a foundation of the next version of the KeY system, KeY 3.0, to make
reasoning about Java programs simpler.

Following along the tradition of Hoare, we focus on abstract programs. The
abstract programs we study operate on (an abstraction of) random access memory
in which locations are values too, which we call pointer programs. In such programs
there are three different storage locations of values: the registers, the stack, and
the heap. The value of every variable in a program can be thought of as if being
stored in some register; one can introduce local variables and pass along values as
parameters in procedure calls (also called function calls or method calls, depending
on circumstances) by making use of the stack; and finally one can create, manipulate,
and destroy so-called objects which are stored in another part of the memory called
the heap.

For example, see the program in the C programming language in Figure 1.1.
After compiling the program, and running it with the command line argument 5,
we can see the following happening:

(a) the procedure main is called, with argc = 2 and argv pointing to some array
of strings on the heap;

(b) the standard library function atoi is called, which converts the contents of
the string pointed to by argv + 1 into an integer;

(c) we allocate a dynamically sized array of n integers with unknown initial
values, and let x point to the start of that array;

1.1. POINTER PROGRAMS 9

#include <stdio.h>
#include <stdlib.h>
int* x; // global variable
int n; // global variable
int main(int argc, char** argv) { // formal parameters

if (argc != 2) return 1;
n = atoi(argv[1]); // assignment, procedure call
x = (int*) malloc(n * sizeof(int)); // allocation
if (x == NULL) return 1;
// Create table
for (int i = 0; i < n; i++) { // local variable (i)

int j = n - i; // local variable (j)
*(x + i) = (i * j) + (j - i); // mutation

}
// Find the largest number
for (int i = 1; i < n; i++) // local variable (i)

if (*x < *(x + i)) // lookups
*x = *(x + i); // lookup, mutation

// Print output
printf("%d\n", *x); // lookup, procedure call
free(x); // deallocation
return 0;

}

(a) Location argv + 0 argv + 1
Value − z

(b) Location z + 0 z + 1
Value '5' '\0'

(c) Location x+ 0 x+ 1 x+ 2 x+ 3 x+ 4
Value − − − − −

(d) Location x+ 0 x+ 1 x+ 2 x+ 3 x+ 4
Value 5 7 7 5 1

(e) Location x+ 0 x+ 1 x+ 2 x+ 3 x+ 4
Value 7 7 7 5 1

Figure 1.1: A C program that computes a table, finds the maximum, and prints
the result.

10 CHAPTER 1. INTRODUCTION

(d) we initialize the values of the array that x points to;

(e) we search the array from the left to right, eventually storing the largest
number at the beginning of the array.

This example illustrates the following programming concepts that we investigate:

• local variables and global variables,

• basic sequential programming structures such as loops,

• procedure calls with call-by-value parameters,

• dynamic allocation of memory,

• pointer dereferencing—also known as lookup,

• assignment through pointer dereferencing—also known as mutation,

• deallocation of dynamically allocated memory.

However, the example also illustrates many features from which we abstract:
complex expressions, types and data structures, value representation and memory
layout, standard libraries, procedures with return values, non-local control flow,
input/output, et cetera. We abstract from these features to instead focus on the
foundational issues.

One could argue that it is not necessary to study abstract pointer programs, since
already the abstract programming language of simple while-programs operating on
integers, as studied by Hoare, is Turing-complete. Hence every pointer program can
be turned into such a simpler while-program that does not use pointers at all, and
then one could use the existing program verification system introduced by Hoare, to
indirectly reason about the correctness of (translated) pointer programs. However,
such approach is not natural, since the formulation of correctness specifications then
depends on the chosen translation (of which there are many variations). Instead,
we want to keep close to a natural programming model, that is close to how one
would informally reason about pointer programs.

Furthermore, we focus in the main matter of this thesis on the primitive opera-
tions of pointer programs. The control structures such as conditional branching,
looping, and recursive procedures are orthogonal to our concern: these complex
control structures are discussed in the appendix.

1.2 Why separation logic?
The next important design choice is what specification language to employ. The
quest for finding a suitable specification language for pointer programs is long.
Traditionally, Hoare used so-called first-order logic as a specification language for
program verification. Early on, in the 1970s, the problem of finding a suitable
specification language for describing the behavior of pointer programs was explored,

1.2. WHY SEPARATION LOGIC? 11

for different classes of data structures, by R.M. Burstall [42], T. Kowaltowski [138],
M.S. Laventhal [142], and others. The problem with these approaches, however,
was that they were restricted to classes of data structures that were all tree-like.
The main difficulty of giving specifications to pointer programs is, however, in
dealing with the cyclic nature of the data structures stored on the heap.

In 1975, two papers appeared by S.A. Cook and D.C. Oppen [56, 169]. In these
papers, the matter of proving correctness of pointer programs was settled—and for
all data structures in full generality, including cyclic data structures: first-order
logic was chosen as a specification language, in the tradition of Hoare, and a
soundness and completeness proof was given.1 Unfortunately, these papers did not
become widely known. In fact, later on, it was believed that first-order logic is not
suitable as a specification language for pointer programs, since the axioms of Cook
and Oppen were deemed ‘extremely complicated’ [187]. Although it is undeniable
that Cook and Oppen have demonstrated completeness, hence that this ‘extreme’
complexity is necessary, what remains is the strive for the best of both worlds:
completeness and simplicity.

Next to the approach by Cook and Oppen, there is an alternative approach for
reasoning about pointer programs. Essentially, one could treat the heap as if it
were one large array. One can look up the value stored at a location by simply
treating the location as an index into the array representing the heap. Allocation
then amounts to searching that array for a free location, and mutation amounts
to assigning a value to a particular index in the array. A special marker value is
needed to indicate the absence of a value, representing a free location on the heap:
deallocation then simply assigns that location in the array this special value. To
reason about allocations, mutations, and deallocation, one is required to perform
an alias analysis on every reference to the heap in a specification. This approach to
axiomatization, in which one uses an assignment axiom for arrays that deals with
complex index expressions, was first described [11] in detail in 1980 in the book
Mathematical Theory of Program Correctness by J.W. de Bakker [61] (see also the
work by J.M. Morris [158]). Although De Bakker did not explicitly mention pointer
programs, he did mention in the first paragraph of Chapter 4, that introduces the
assignment axiom for arrays, that it ‘constitutes a very modest venture into the
realm of data structures.’ Maybe he was too modest, since—similar to Cook and
Oppen’s approach—also De Bakker’s approach is sound and complete.

This approach, reasoning about aliasing as in the case of updating an array, is
also taken in proof systems for reasoning about the correctness of object-oriented
programming languages, as was first done in the papers by P.H.M. America and
F.S. de Boer, collected in the 1991 Ph.D. thesis of De Boer [63], and later refined
by C. Pierik and De Boer [176]. In object-oriented languages one abstracts from
locations of objects as manipulable addresses, and instead treats objects as abstract
identities [43, 155, 173]. By doing so, object-oriented languages can be equipped
with a garbage collector, removing the need for programmers to manually deallocate
unreachable memory. De Boer et al. axiomatized the operation of object allocation

1The completeness result was relative to an expressivity condition, and later this became
known as ‘relative completeness’ in the sense of Cook [55].

12 CHAPTER 1. INTRODUCTION

by introducing a substitution-like operator, analyzing formulas by their logical
structure and performing alias analysis in a special sense—by answering the question:
does a term potentially refer to a newly created object or not [4]? Since their work
focused on garbage-collected object-oriented languages, this line of research lacked
axiomatization of the operation of deallocation.

These approaches, as described by Cook and Oppen, De Bakker, and De Boer
et al., are similar by recognizing they all perform explicit alias analysis. In
the axiomatization of operations such as allocation, mutation, or deallocation,
one analyzes every reference to the heap and decide whether it is affected by
the operation or not. Whether aliasing occurs or not is made explicit in the
axiomatization by logically making a case distinction for each reference to the heap
that potentially is an alias with the location affected by the operation. Explicit
alias analysis may complicate practical reasoning for two main reasons:

• it is difficult to modularize reasoning about fragments of the heap—that is, it
is difficult to adapt specifications that specify ‘local’ properties of the heap
into specifications that specify ‘global’ properties of the heap;

• alias analysis is required for every reference to the heap—and since the alias
analysis results in a case distinction (alias or not), reasoning about non-trivial
specifications quickly becomes complex.

In practice, explicit alias analysis is also performed by the KeY system [3]. In KeY,
program specifications describe properties of the entire ‘global’ heap. Although
KeY employs techniques that allow for modular reasoning [196], by declaring what
locations of the heap can be changed and accessed, this still yields complex proof
obligations and difficult to automate proofs [113, 207].1

With explicit alias analysis, complexity arises from reducing the fact that an
alias occurs or not to an equational property, that is, whether two expressions
refer to the same location or not. There is also a different approach, which one
could call implicit alias analysis. With implicit alias analysis, one avoids such
reduction to equational properties, and thereby avoid the need to perform many
case distinctions. The approach of implicit alias analysis can be thought of as more
‘topological’ in nature, in the sense that it is possible to guarantee two expressions
are not referring to the same location by their spatial properties. Two expressions
are equal, and refer to the same location, if they have every property in common
(sometimes known as Leibniz’ law). With implicit alias analysis, one guarantees the
absence of aliasing by declaring two expressions denote a location that is necessarily
separate in space, and thus have not every property in common.

Around the turn of the millennium, J.C. Reynolds wrote the article Intuitionistic
Reasoning about Shared Mutable Data Structure [187]. Herein, Reynolds returns
to the original idea set out by Burstall [42]: the specification language should not
only describe the state of the memory as one could do in first-order logic, but also
capture certain spatial aspects of the layout of the memory. He writes:

1This difficulty, encountered during practical verification efforts of the Java collection frame-
work, was one of the motivations for starting the research described in this thesis.

1.2. WHY SEPARATION LOGIC? 13

“Burstall’s ‘distinct non-repeating tree system’ was a sequence of as-
sertions, written ϕ1 ∗ . . . ∗ ϕn [in the notation of this thesis], where
each [component] ϕi described a distinct region of storage, so that an
assignment to a single location could change only one of the ϕi. I
believe that this idea of organizing assertions to localize the effect of
a mutation may be the key to scalability in reasoning about shared
mutable data structure.” [187]

Reynolds significantly improves the approach by Burstall, as described in several
papers [187, 188, 189], by allowing for sharing of substructures from within different
components, and by allowing pointers both to and from different components.
Together with P.W. O’Hearn, S.S. Ishtiaq [125], and H. Yang [230], Reynolds
thus introduced what later became known as separation logic (see also [168, 67]).
Note that, already from the start of the investigation into, and later development
of, separation logic, there has been a focus on the scalability of the approach,
and practical usability of the specification language. In fact, in the paper Why
separation logic works, D. Pym, J.M. Spring, and O’Hearn [180] argue that

“separation logic works because it merges the software engineer’s con-
ceptual model of a program’s manipulation of computer memory with
the logical model that interprets what sentences in the logic are true,
and because it has a proof theory which aids in the crucial problem of
scaling the reasoning task. Scalability is a central problem, and some
would even say the central problem, in applications of logic in computer
science.”

Separation logic became hugely successful and influential. Over the past
twenty years, separation logic developed into a serious academic research sub-
ject [125, 89, 215, 140, 73, 161, 165], and has numerous applications in practical
program verification [139, 132]. In 2016, the European Association for Theoretical
Computer Science (EATCS) awarded the Gödel prize to S. Brookes and O’Hearn
for introducing concurrent separation logic [36, 163], an extension of Reynolds’
program logic to reason about concurrent pointer programs. Also in practice, sepa-
ration logic is successful, since it forms the basis for practical program verification
systems [131, 228] for proving correctness of modern programs, e.g. written in
Mozilla’s Rust and Google’s Go.

Separation logic is the specification language that we settle on in this thesis:
we study pointer programs and describe program behavior using the language
of separation logic. Separation logic has many benefits: since the heap is not
represented by any variable, the language offers modular descriptions of fragments
of the heap—and as such allows easy adaptation of ‘local’ specifications into ‘global’
specifications. Due to the main idea of Burstall, improved by Reynolds, it is not
always the case that alias analysis is necessary for every reference to the heap in
specifications of pointer programs, but alias analysis is restricted to only those
components that are actually affected by memory manipulating operations: this is
the essence of the scalability argument of separation logic.

14 CHAPTER 1. INTRODUCTION

1. Assertion language First-order logic Separation logic†

2. Program logic Hoare’s logic Reynolds’ logic†

3. WP-calculus Dynamic logic Dynamic separation logic††

Table 1.1: Terminology as used in this thesis. The first column shows different
levels of the logics studied. The logics marked by a dagger (†) are prime subjects
of this thesis, where novel contributions are made. The logic marked by a double
dagger (††) is entirely novel.

In becoming such a mature subject of study, it is also increasingly more impor-
tant that its foundations are properly understood. However, as often happens in
periods of enthusiastic scientific advancement, and as the title of the paper Bringing
order to the separation logic jungle by Q. Cao, S. Cuellar, and A.W. Appel [46] may
suggest, no longer it is clear what one means by ‘separation logic’: some authors
use the it to mean (a variant of) the assertion language, being an extension of
first-order logic; whereas other authors use it to mean (a variant of) the program
logic, being an extension of Hoare’s logic.

In fact, the 2002 paper by Reynolds [188] introduced two systems: an assertion
language and a program logic. To avoid confusion, we shall call the assertion
language ‘separation logic’, and we shall coin the name ‘Reynolds’ logic’ to refer
to the program logic (and not the assertion language).1 From this point onward,
we mean by ‘separation logic’ only the assertion language that was introduced by
Reynolds in 2002 [188]. By introducing this terminology, it is easier to see the
difference between ‘separation logic’ and ‘Reynolds’ logic’, and see how they are
related to ‘first-order logic’ and ‘Hoare’s logic’, respectively. Note that by giving
these names to the logical systems we study it remains important to remember
that it was not only Hoare or Reynolds, but many whom have contributed to the
formulation, semantics, and axiomatization of these program logics.

We recognize three different levels: that of assertion languages, that of program
logics, and that of weakest precondition calculi. On the first level, separation
logic is used as an assertion language, similar to how first-order logic is used as an
assertion language. On the second level we have Hoare’s logic, the deductive system
introduced by Hoare in 1969 [118, 11]. On the same level, by Reynolds’ logic we
mean the extension of Hoare’s logic to incorporate separation logic in specifications
of programs to reason about pointer programs, introduced by Reynolds in 2002 [188].
On the third level, we investigate dynamic separation logic—an extension of dynamic
logic. First-order dynamic logic was introduced by D. Harel in 1979 [107]. Dynamic
separation logic is novel and not studied before2. By dynamic separation logic
we mean first-order dynamic separation logic: in 2020, propositional dynamic
separation logic was introduced by Maratovich [147].

An overview of the new terminology is shown in Table 1.1. The relation between
the different logics is the following:

1The only previous occurrence of the name ‘Reynolds’ logic’ was found in an unpublished
note by David A. Naumann.

2Credit is due to Einar Broch Johnsen for suggesting the name ‘dynamic separation logic’.

1.2. WHY SEPARATION LOGIC? 15

1. The level of the assertion language: we consider the formulas of first-order
logic (with a built-in equality predicate), and the formulas of separation logic.
Separation logic is an extension of first-order logic, in the sense that every
formula of first-order logic is also a formula of separation logic. Separation
logic adds two new connectives, the separating conjunction ∗ and the separat-
ing implication −∗, and a built-in predicate, the ‘points to’ predicate ↪→, to
the syntax of first-order logic. In the semantics of these assertion languages,
we focus on classical first-order logic, and classical separation logic [188].

2. The level of the program logic: in Hoare’s logic one reasons about Hoare
triples {ϕ} S {ψ}, where the precondition ϕ and postcondition ψ are first-order
formulas (of the level above) and S a program in a simple while-language.
A Hoare triple is a specification of the program S, where the postcondition
ψ describes the expected final state after running the program S from an
initial state satisfying the precondition ϕ. We focus on partial correctness
semantics of Hoare’s logic.

In Reynolds’ logic one reasons also about triples {ϕ} S {ψ}, but the assertions
are now formulas of separation logic (of the level above) and S is a pointer
program (an extension of the while-language with heap memory manipulating
operations). Almost all axioms and proof rules of Hoare’s logic are reusable in
Reynolds’ logic, except for the invariance rule (introduced in the introduction
of Chapter 4). Reynolds’ logic further includes the so-called frame rule and
axioms for the primitive operations of pointer programs. We focus on the
strong partial correctness semantics of Reynolds’ logic.

3. The level of the WP-calculus, or weakest precondition calculus: we consider
the formulas of dynamic logic, and the formulas of dynamic separation logic.
Dynamic logic is an extension of first-order logic by introducing the weakest
precondition [S]ψ for every given program S and postcondition ψ. The
Hoare triples {ϕ} S {ψ} of Hoare’s logic (of the level above) are embedded
in dynamic logic as the implication ϕ→ [S]ψ: the given implication is valid
in dynamic logic if and only if the Hoare triple is valid on the level above.

Our novel approach is, at this level, to introduce dynamic separation logic as
an extension of dynamic logic which includes the connectives of separation
logic, in such a way that the triples {ϕ} S {ψ} of Reynolds’ logic (of the level
above) can be embedded into dynamic separation logic as the implication
ϕ → [S]ψ, see also Section 4.4. Note that the difference between dynamic
logic and dynamic separation logic is that, in the latter, we can use the
separating connectives and the built-in ‘points to’ predicate, in a similar way
how separation logic extends first-order logic at the first level. By introducing
dynamic separation logic, an alternative axiomatization of Reynolds’ logic
(of the level above) was discovered (see Section 4.5).

Coming back to the article by Halpern, Harper, among others: that logic is
unusually effective in computer science can again be witnessed from Table 1.1. The
systems that we study in this thesis all end with ‘logic’ !

16 CHAPTER 1. INTRODUCTION

1.3 Why new foundations?
Separation logic is an extension of first-order logic, in the sense that it adds two
new connectives: the separating conjunction ∗, and the separating implication −∗.
The latter is also called the magic wand. Already the separating implication is
sufficient, in the sense that separation logic without separating conjunction but
with separating implication is equally expressive to separation logic with both
connectives [35]. However, reasoning about separating implication is complex:
separation logic is equally expressive as weak second-order logic, and therefore is
undecidable [35]. In practice, tools for automatic reasoning about separation logic
either are restricted to the fragment of the language without separating implication
or require so-called packing operations to direct the proof search [59].

The research of this thesis started with the discovery of an alternative axiom-
atization of Reynolds’ logic, the program logic used for reasoning about pointer
programs. By taking a different approach than what was done previously, a new
axiomatization of exactly the same theory of pointer program correctness was
discovered (see Chapter 4). However, this alternative axiomatization gave rise
to a remarkable question: we generate two formulas in separation logic that are
necessarily equivalent, since both are the weakest precondition with respect to a
given program and postcondition. Symbolically, we have (see also Section 2.1):

(x 7→ −) ∗ ((x 7→ 0) −∗ (y ↪→ z)) (1.1)
≡

[[x] := 0](y ↪→ z) (1.2)
≡

(x ↪→ −) ∧ ((y = x ∧ z = 0) ∨ (y ̸= x ∧ y ↪→ z)) (1.3)

where (1.2) is the weakest precondition expressed in dynamic separation logic with
respect to the program [x] := 0, that assigns the value 0 to location x, and the
postcondition (y ↪→ z), that expresses that location y has value z. The approach of
Reynolds to generate the weakest precondition leads to the formula (1.1), in which
we can see the two separating connectives introduced and two subformulas. The
subformula (x 7→ −), respectively (x 7→ 0), expresses that strictly the location x
has some value, respectively the value 0. The weakest precondition (1.1) follows
the implicit alias analysis approach. In contrast, our novel approach results in
generating the weakest precondition (1.3), following the explicit alias analysis
approach. Are we now also able to show the equivalence of (1.1) and (1.3) using
the existing techniques for reasoning about separation logic?

In particular, this question involves establishing sufficient facts that speak
about the so-called ‘points to’ predicates. There is the weak (or loose) ‘points
to’ predicate ↪→, and the strict ‘points to’ predicate 7→. In his seminal paper,
Reynolds describes a set of necessary truths that hold for these ‘points to’ predicates.
However, Reynolds also writes (emphasis not originally present):

“Finally, we give axiom schemata for the [‘points to’] predicate 7→.
(Regrettably, these are far from complete.)” [188]

1.3. WHY NEW FOUNDATIONS? 17

Nonetheless, this never was a problem for the success of separation logic. Was it
simply never the case anyone needed more than the axioms that were given by
Reynolds? Or, may our question reveal there is a missing piece?

Part of the problem may have come from the fact that ‘separation logic’ was am-
biguous. As alluded to previously, we distinguish ‘separation logic’ from ‘Reynolds’
logic’. Surely, Reynolds’ logic is complete in a special sense: it was established
multiple times in different settings that the program logic is sound and relatively
complete. For example, in the work by M.F. Al Ameen, W.-N. Chin, M. Tatsuta
[81, 209], the authors show relative completeness of Reynolds’ logic based on a
weakest precondition axiomatization, a result that is on the same level as the
well-known result by Cook that proves the relative completeness of Hoare’s logic
[55] that in part appeared earlier in the Ph.D. thesis of Clarke Jr. [50] and the
M.Sc. thesis of G.A. Gorelick [96]. Also there is a strongest postcondition axioma-
tization of Reynolds’ logic, by C. Bannister, P. Höfner, and G. Klein [15]. However,
in the work by Al Ameen et al. that gives a weakest precondition axiomatization,
the frame rule is not needed to obtain relative completeness: for the primitive
operations, a direct weakest precondition can be given, and in the case of recursive
procedures one could employ an encoding of the heap to obtain most general
specifications.

However, the frame rule is a crucial aspect of Reynolds’ logic. That it is possible
to reason locally about the correctness of pointer programs was investigated in
detail in the Ph.D. thesis of Yang, where he shows that the frame rule can be used
to obtain modular relative completeness [235, 230]. Furthermore, different axioms
for the primitive operations of pointer programs can be given and these axioms are
interderivable by use of the frame rule (see also [45, 190, 58, 164]). In the case of
the mutation operation that modifies the heap, the frame rule is instantiated with a
formula involving the magic wand. In practice, many tools for automatic reasoning
in separation logic are restricted to the −∗-free fragment of the language, due to
the complexity of reasoning about the magic wand [148, 75]. Since using the magic
wand is complex to reason about, we thus wish to obtain a relative completeness
result without using the magic wand connective [145, 19]. This question shows an
interesting connection between complexity (avoiding the magic wand) and relative
completeness of Reynolds’ logic.

It turns out that our novel approach leading to an alternative axiomatization
also solves this open problem: we can show that the local axioms are relatively
complete by instantiating the frame rule without introducing the magic wand (see
Section 4.5). This means that any valid Hoare triple of primitive pointer programs,
which are specified without using the magic wand, can also be proven correct
without using the magic wand in the frame rule.

All these relative completeness results of Reynolds’ logic work on top of the
assumption that there is an oracle which provides the valid formulas of separation
logic. This assumption is similar to the one made in the relative completeness
result of Hoare’s logic: the question of program correctness is reduced to questions
of validity in the underlying logic [149]. This process, of reducing the question of
program correctness to questions of logical validity, is called verification condition

18 CHAPTER 1. INTRODUCTION

generation [151]. In the case of Hoare’s logic, the underlying logic is first-order logic.
Since there are proof systems for first-order logic (e.g. Hilbert systems, natural
deduction, sequent calculus) which are sound and complete, it is actually possible
to prove the true verification conditions, and thus to prove that correct programs
are indeed correct.

In the case of Reynolds’ logic, the underlying logic is separation logic. However,
what about the question whether separation logic—the logic used to reason about
the assertion language—is complete, similar to how Gödel proved completeness of
first-order logic in his Ph.D. thesis [136, 34]? Again there may be some ambiguity
involved: it is easy to make the mistake to think that first-order logic must be
incomplete, since Gödel proved the famous incompleteness theorems [202, 182].
However, the incompleteness theorems state something different than the negation
of Gödel’s completeness theorem.

Ironically, the 2016 Gödel prize winners, Brookes and O’Hearn, wrote [38]:

“It is all too easy to get caught up in completeness and related issues for
formal systems that turn out to be too complicated when humans try
to apply them; it is more important first to get a sense for the extent
to which simple reasoning is or is not supported.”

This thesis is summarized as such: separation logic has passed the phase in which
‘a sense for the extent to which simple reasoning is supported’ is obtained, and
now it is time ‘to get caught up in completeness and related issues’. Although
there were earlier attempts to give a completeness result for separation logic, either
by restricting to a fragment of the language [20], by abstracting away from the
‘points to’ predicate [121], or by looking at a restricted form of completeness called
weak completeness in which one reasons only about universal validity [143]:1 the
completeness of separation logic has not yet been established. Soundness and
completeness of a logic (also called its adequacy) is an important matter, as can be
illustrated by considering their practical applications.

Practical tools for reasoning about separation logic can be grouped in two
fundamentally different approaches: satisfiability checking and theorem proving.
This follows the same two approaches in first-order logic. In the case of first-order
logic, these different approaches are possible due the adequacy of first-order logic:
the set-theoretic semantics underlying first-order logic is sound and complete with
respect to its syntactic proof system, as was proven by Gödel in his completeness
theorem. Due to the adequacy of first-order logic, we can try to answer the question
whether a formula ϕ is a (syntactic or semantic) consequence of a theory Γ in two
essentially different ways: either the semantic way, by showing a counter-model
that satisfies the theory Γ but not ϕ, or the syntactic way, by showing there is a
proof with premises in Γ and conclusion ϕ. However, this analysis requires human
ingenuity: the question whether a formula follows from a given theory in general
is undecidable, as was established by Church and Turing [23], both inspired by
Gödel’s incompleteness theorems. Despite this undecidability, in the years that

1The authors of [143] acknowledged on their website that one of their proof rules is unsound
for the standard semantics, and removing that rule yields an incomplete proof system.

1.3. WHY NEW FOUNDATIONS? 19

followed, a rich model theory and proof theory developed for first-order logic,
leading to a great many techniques on either side, and often transporting results
from one side to the other side due to completeness.

However, in the case of separation logic, there is no analogue to Gödel’s
completeness theorem. The goal of this thesis, and leading to new foundations for
separation logic, is to be able to provide such an analog to the completeness theorem,
or—at least—make the path towards it clear. However, why are new foundations
needed? To motivate our goal, we revisit the equivalence of the generated weakest
preconditions (1.1) and (1.3) discovered earlier.

In satisfiability checking, one is interested in automatically checking the satisfia-
bility of separation logic sentences. To do so, it is useful to consider a semantics that
is based on finite or finitary structures that can be enumerated. Many fragments of
separation logic were isolated, decision procedures for some of them were developed
and compared in benchmarks, and undecidability results for other fragments were
proven [40]. There are fragments called propositional separation logic [44], set
separation logic [110], separation logic of linked lists [177], and there are different
subsets of the language which restricts the use of certain connectives [69]. However,
none of the current satisfiability checking tools of separation logic are able to show
our equivalence of (1.1) and (1.3), either because the equivalence falls outside
the supported fragment or due to a failure to produce an output. This shows
that the tools are incomplete, but this is not due to deep results such as Gödel’s
incompleteness as one might expect, but instead due to an inadequate semantics.

On the other hand, in interactive theorem proving, one is interested in construct-
ing finitary proofs (also called certificates) that witness the validity of separation
logic sentences. To do so, logical frameworks or embeddings in type theories can
be employed, as they help with the construction of proofs. However, by focusing
on the proof system only, we suffer from inadequacy of the logic due to an under-
developed model theory: if one fails to prove something, one can always be blamed
for not looking far enough, since there are no semantic means by which one can
convincingly show that there is no proof to be found in the first place. One may
argue that, due to the rich structures in which one is reasoning, we are already
incomplete (in Gödel’s incompleteness sense). But does that fact alone justify a
lack of interest in the adequacy of the logic of separation logic itself?

Summarizing the state-of-the-art that is based on an inadequate semantics:
a tool based on satisfiability checking can be used to find counter-models, but
can never be used to argue that a formula is valid from the lack of finding any
counter-models. A tool based on (interactive) theorem proving can be used to find
proofs of validity, but can never be used to argue that a formula is invalid from the
lack of finding a proof. We need an adequate logic to connect the two approaches!

The lack of an adequate semantics in current practice leads to workarounds.
For example, one would need to introduce ad-hoc theories, e.g. a theory per data
structure such as linked lists [48, 211] or trees [178, 166]. Such theories are typically
infinite and defined inductively. But, due to the lack of an adequate semantics, it
is not clear either what are, or are not, the consequences of each different theory.

20 CHAPTER 1. INTRODUCTION

New foundations are needed, because in the case of first-order separation
logic we already suffer from inadequacy due to non-compactness of the standard
interpretation: there is no suitable finitary proof theory in which all valid formulas
can be derived. This should not be surprising, since the same also holds for first-
order logic in which the semantics is restricted to finite structures—also leading
to non-compactness: there is no finitary proof theory in which the valid formulas
of first-order logic with respect to finite structures can be derived. Furthermore,
an adequate semantics for separation logic may be the first step towards a model
theory that helps answering meta-theoretical questions such as consistency and
independence of axioms.

Thus, to attain our goal of completeness for separation logic, we design a model
theory (Chapter 2) and proof theory (Chapter 3) that is adequate for separation
logic. Surely, we do not strive for decidability: that is an unattainable goal for
the same reasons as for first-order logic. However, from a methodological point of
view, an adequate semantics gives again two essentially different ways to establish
whether a formula of separation logic ϕ is a (syntactic or semantic) consequence
of a theory of separation logic formulas Γ or not: the syntactic way of showing a
proof, or the semantic way of showing a counter-model. We furthermore desire
that the proofs in our proof theory are finitary, for the following reason: we
need an effective procedure for deciding whether some object is acceptable as
proof or not. The decidability and complexity of the proof checking procedure is
important, since otherwise an unfair and high amount of effort is required of the
proof checker. In proof theories where the proof checking procedure is undecidable,
or is unreasonably complex, it becomes possible to give a proof by intimidation
where all the resources of the proof checker are exhausted while no new knowledge
is gained (see also [1, 223]).

Such new foundations requires revision of the basic assumptions underlying the
existing standard interpretation of separation logic, but it also requires the design
of a new proof system. The first crucial point in revising the basic assumptions
is to drop a finiteness condition on the heaps with respect to which separation
logic formulas are evaluated, thereby generalizing the interpretation of separation
logic and include the possibility of infinite heaps. The second crucial point is
restraining the expressive power of higher-orderedness: in this thesis it is shown
that the (non-standard) interpretation of separation logic with respect to all (finite
or infinite) heaps can be considered as an intermediate logic between first-order
logic and second-order logic, and might even be equivalent to second-order logic.
However, this is also not a suitable interpretation, so we need to follow the footsteps
of Henkin [108, 109] to obtain a suitable interpretation for which a soundness and
completeness result can be obtained, and restrict ourselves to particular sets of
heaps: those sets of heaps which includes the first-order definable heaps.

Within the separation logic community there seems to be a wide-spread belief
that finiteness is fundamental assumption. Many widely-cited papers on separation
logic work with finitely-based heaps, see e.g. [188, 20, 74, 27, 39, 90, 68, 185, 77, 78],
although there are also some authors who drop the finiteness condition [222, 121].
In fact, after submission of a paper of some of the results presented in this thesis,

1.3. WHY NEW FOUNDATIONS? 21

with the finiteness condition dropped, some of the anonymous reviewers remarked:

“By extending the semantics to infinite and first-order definable heaps,
sure, we obtain a sound and complete axiomatization. However, what
is this useful for? Programs most definitely operate only on finite heaps;
so how useful (sound?) is it to use the proof system obtained from an
extension of the semantics of separation logic to infinite heaps?”

and

“For me, the finiteness of the heap is one of the fundamental decisions
about separation logic. Of course, it is very natural to try to see what
happens if some assumption is weakened or removed. Sometimes one
finds something very interesting, sometimes less so. [...] My main
objection is about motivation. It is not clear to me why these variations
on separation logic are interesting. It is of course good to explore all
variants of a standard definition. This paper does it well, but the results
it obtains are maybe not important enough for it to be accepted at
[conference].”

From a practical standpoint, one may object to the generalization to infinite
heaps by arguing that infinite heaps do not exist in practice (“programs most
definitely operate only on finite heaps”). From a theoretical standpoint, one
may object to the generalization to infinite heaps by arguing that the class of
valid formulas changes accordingly. Against this and similar objections one can
put forward a philosophical argument, a mathematical argument, a semantical
argument, a correctness argument, a computational argument, and a pragmatical
argument—all in favor of allowing infinite heaps.

The philosophical argument. The concepts of ‘finite’ and ‘infinite’ belongs to
mathematics and not to logic, since finiteness is a predicate that speaks about
the cardinality of a set and thus requires, in the background, knowledge of
sets (e.g. as axiomatized by classical Zermelo-Fraenkel set theory). It seems
good philosophical practice to eliminate as many assumptions, or ontological
commitments, as possible from a logic.

The mathematical argument. The first-order theory of real closed fields in
particular has the real numbers as a model, and is an elegant theory with
nice meta-theoretical properties such as the decidability of its first-order
properties. The objects of this theory are infinitary too, such as the real
algebraic number

√
2 when viewed as an infinite decimal expansion. Going

further, it is known that, for example, E.W. Dijkstra did not limit himself to
integer programs, but also proved correctness of programs that operate on
(mathematical) real numbers.1 To the ultrafinitist it may seem defensible to
say that such ‘real numbers’, viewed as infinitary mathematical objects, do
not ‘really’ exists. However, real numbers are a useful fiction: there are many

1See https://www.youtube.com/watch?v=GX3URhx6i2E

https://www.youtube.com/watch?v=GX3URhx6i2E

22 CHAPTER 1. INTRODUCTION

benefits from using real numbers in applications such as analysis, probability,
physics, et cetera, and this wide applicability follows from its well-understood
theory. Similarly, by considering the possibility of infinite heaps, as a useful
fiction, we shall see in this thesis that we obtain an elegant meta-theory,
which may lead to practical benefits too.

The semantical argument. In the semantics of programs we also deal with
potentially infinite sequences of successive configurations. In fact, for non-
terminating executions, we have an infinite sequence of configurations. It
seems unfair to, one the one hand, allow this possibility of infinity in the
semantics of programs, but, on the other hand, deny the possibility of
infinite heaps in the semantics of separation logic. In fact, in practice, non-
terminating programs are useful too: many reactive systems are specified by
non-terminating programs that react to input events by generating output
events.

The correctness argument. It turns out that we are able to show that the proof
rules and axioms of Reynolds’ logic are all sound (and relatively complete):
both in the standard interpretation where we restrict to finite heaps, but also
the full interpretation that is based on all and potentially infinite heaps, or
any intermediary interpretation that fixes a set of heaps that satisfy modest
closure conditions. It is quite remarkable that the program logic remains
sound and relatively complete, even when the interpretation of the assertion
language can be changed ad libitum.

The computational argument. Infinite heaps can represent potentially infinite
data, such as input/output streams. One could realize potentially infinite
data by a lazy computation strategy, in which the value of a location of an
infinite heap is computed on-the-fly. Such potentially infinite data structures
could be specified co-inductively. Alternatively, potentially infinite data
could result from interaction with an external environment, e.g. in computer
networks. Hence it is not the case that “programs most definitely operate
only on finite heaps”.

The pragmatical argument. Even when one restricts to heaps with a finite
domain, there remains the difference between heaps which have a bound on
the size of their domain or whether the (finite) domain is unbounded. In
practice, and especially in non-terminating programs, one has to work with a
bound on the maximum available free locations on the heap, e.g. there is only
finitely much memory available. Such heaps can be modeled by an infinite,
co-finite heap, in which there are only finitely many locations not allocated.

However, as soon as one is committed to the possibility of infinite heaps, one should
not overshoot and fully embrace infinite heaps. The full interpretation of separation
logic, in which we consider all (finite or infinite) heaps is just as non-compact as
the standard interpretation, and thus is not suitable for attaining our goal of an
adequate logic.

1.4. SCIENTIFIC CONTRIBUTIONS 23

The second crucial point is that we introduce an interpretation of separation
logic akin to Henkin’s general interpretation of higher-order logic, in which the
formulas of separation logic are interpreted with respect to a given set of (finite or
infinite) heaps. We further restrict ourselves to general interpretations in which the
set of heaps satisfy a so-called semantic comprehension condition. One model of
that interpretation consists precisely of those heaps that are definable by a formula
(which themselves are recursively enumerable). This latter model is central in the
completeness proof (of separation logic). We also introduce another class of general
interpretations, in which the set of heaps satisfy a number of closure properties:
these sets of heaps are called memory models. Memory models are central in the
relative completeness proof (of Reynolds’ logic).

1.4 Scientific contributions
In this thesis, we focus sharply on the subject: classical separation logic. The thesis
consists of two parts: in the first part, we study the logic of separation logic, and
in the second part we study Reynolds’ logic.

The results of this thesis are primarily based on the following two publications:

• The logic of separation logic: models and proofs
Frank S. de Boer, Hans-Dieter A. Hiep, Stijn de Gouw
In: Automated Reasoning with Analytic Tableaux and Related Methods: 32nd
International Conference, TABLEAUX, Proceedings
Lecture Notes in Computer Science, volume 14278
Springer, 2023

• Dynamic separation logic
Frank S. de Boer, Hans-Dieter A. Hiep, Stijn de Gouw
In: Proceedings of MFPS XXXIX
Electronic Notes in Theoretical Informatics and Computer Science, volume 3
Episciences, 2023

These publications also correspond to the two parts of this thesis. The first part
comprises a model theoretic and proof theoretic investigation of classical separation
logic—the logic. The second part comprises a novel interpretation of Reynolds’
logic, the introduction of dynamic separation logic, and an alternative weakest
precondition and strongest postcondition axiomatization.

In Chapter 2 (of the first part) we show the inadequacy of the standard
of separation logic, by showing it is non-compact. We then introduce a new
interpretation, the full interpretation of separation logic based on the possibility
of infinite heaps, and show it is inadequate too. We investigate the sufficient and
necessary conditions for an embedding of the standard interpretation into the full
interpretation, and we introduce relational separation logic to compare separation
logic to second-order logic. Interestingly, the full interpretation of separation
logic is close to the standard interpretation of second-order logic, and we see that
expressivity of a binding operator is sufficient for the two logics to coincide.

24 CHAPTER 1. INTRODUCTION

In Chapter 3 (of the first part) we introduce a proof theory with respect to a
novel interpretation of separation logic that is based on first-order definable heaps.
As such, the resulting proof system and interpretation are shown to be adequate.
The proof system is presented as a sequent calculus, but also a second proof system
is introduced in the style of natural deduction. The sequent calculus is shown to
be sound and complete with respect to first-order definable heaps, and the natural
deduction calculus is shown to be sound and its completeness is with respect to
structures satisfying a semantic comprehension condition. The latter proof system
operates on more general formulas than those of separation logic, by introducing a
connective that is closely related to the binding operator of the previous chapter.

The approach of Chapter 4 (of the second part) first introduces general inter-
pretations of separation logic, and a class of structures based on so-called memory
models, which are necessary for showing soundness and relative completeness of
Reynolds’ logic. We introduce a program modality to obtain dynamic separation
logic, a novel logic in the spirit of dynamic logic. We then investigate an alternative
weakest precondition axiomatization and strongest postcondition axiomatization of
Reynolds’ logic with respect to classical separation logic (see Section 4.5). This
approach directly leads to solving an open problem, in which the local axioms of
Reynolds’ logic and the frame rule can be used to derive the global axioms, but
without using the magic wand connective. Furthermore, our approach is robust,
and as such can also be adapted to intuitionistic separation logic: resulting in an
alternative weakest precondition axiomatization and a novel strongest postcondi-
tion axiomatization, given in Chapter C of the appendix (these results are not yet
published).

Background material is presented in the appendix: Chapter A gives the neces-
sary results from classical logic, such as syntax, semantics, basic results from model
theory and proof theory, and soundness and completeness. Chapters 2 and 3 of
the first part of this thesis assume that the reader is familiar with this background
material. Furthermore, Chapter B gives the necessary background from program
verification, such as syntax of programs, operational semantics, denotational seman-
tics, axiomatic semantics, and recursive procedures. Chapter 4 of the second part
of this thesis assumes that the reader is familiar with this background material.

The background material does not contain any novel scientific contributions,
only the presentation of the material is original. Chapter B is based on the following
publication:

• Completeness and complexity of reasoning about call-by-value in Hoare logic
Frank S. de Boer, Hans-Dieter A. Hiep
In: ACM Transactions On Programming Languages And Systems
Volume 43, Issue 4
Association for Computing Machinery, 2021

Some of the results in this thesis have an accompanying Coq formalization to
increase the confidence in the correctness of the presented results (Chapter D).
This is not the first formalization of separation logic in a formal interactive theorem
prover (see e.g. [222]), but it does show the correctness and the base case of relative

1.4. SCIENTIFIC CONTRIBUTIONS 25

completeness of our novel alternative axiomatization presented in Section 4.5 and
the novel axiomatizations for intuitionistic separation logic presented in Chapter C.

Also an alternative logic for describing the state of memory, that is useful
for reasoning about pointer programs, has been investigated—related to the work
presented in this thesis. In there, abstract object creation is investigated and
its connection to a second-order logic as assertion language, resulting in a novel
substitution-like operator for computing a weakest precondition. A case study of
a linked list data structure is described, where the other approach is compared
to separation logic. This work resulted in the following publication, but is not
included in this thesis:

• Footprint logic for object-oriented components
Frank S. de Boer, Stijn de Gouw, Hans-Dieter A. Hiep, Jinting Bian
In: Formal Aspects of Component Software: 18th International Conference,
FACS 2022, Proceedings
Lecture Notes in Computer Science, volume 13712
Springer, 2022

As mentioned before in a footnote, the motivation for starting the research
described in this thesis comes from practical experience with the KeY verification
system, in particular the investigation of the correctness of the linked list data
structure in the standard library of the object-oriented programming language
Java. During these investigations a critical bug was found, thereby demonstrating
the usefulness of program verification in practice. These practical experiences, and
the approach based on dynamic logic for reasoning about pointer structures, have
been published in the following articles:

• Verifying OpenJDK’s LinkedList using KeY
Hans-Dieter A. Hiep, Olaf Maathuis, Jinting Bian, Frank S. de Boer, Marko
van Eekelen, Stijn de Gouw
In: Tools and Algorithms for the Construction and Analysis of Systems, 26th
International Conference, TACAS 2020, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2020, Proceedings,
Part II
Lecture Notes in Computer Science, volume 12079
Springer, 2020

• Verifying OpenJDK’s LinkedList using KeY (extended paper)
Hans-Dieter A. Hiep, Olaf Maathuis, Jinting Bian, Frank S. de Boer, Stijn
de Gouw
International Journal on Software Tools for Technology Transfer, volume 24
Springer, 2022

26 CHAPTER 1. INTRODUCTION

Chapter 2

Model theory of
separation logic

In this chapter, we introduce the syntax and semantics of separation logic. We
shall present the standard interpretation of separation logic, but also investigate
a new interpretation of separation logic and the relations between the different
interpretations of separation logic, and between separation logic and second-order
logic. The first result is the inadequacy of the standard of separation logic, by
showing it is non-compact. We then introduce a new interpretation, the full
interpretation of separation logic based on the possibility of infinite heaps, and
show it is inadequate too. We investigate the sufficient and necessary conditions
for an embedding of the standard interpretation into the full interpretation, and we
introduce relational separation logic to compare separation logic to second-order
logic. An interesting result is that the full interpretation of separation logic is
close to the standard interpretation of second-order logic, in the sense that the
expressivity of a binding operator is sufficient for the two logics to coincide. As
such, this chapter is a model theoretic investigation of separation logic.

Informally, the purpose of separation logic is to formalize and allow reasoning
about the notion of spatial separation. This intuition can best be elucidated by
the following examples, in which we see the different meaning in natural language
of the conjunction of two facts:

• “I know the moon orbits the earth.”

• “I have a Euro in one of my pockets.”

Notice how the meaning of conjunction differs in the following sentences:

• “I know the moon orbits the earth, and I know the moon orbits the earth.”

• “I have a Euro in one of my pockets, and I have a Euro in one of my pockets.”

In the first sentence, describing the knowledge that the moon orbits the earth twice
does not change the way we could interpret the overall sentence. Once you know

27

28 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

something, it does not matter how often you think of it: we have the classical
propositional law that states that A ∧A is equivalent to A for any proposition A.
This works for any ‘pure’ proposition.

However, in the second sentence there is a difference between our classical
intuition, and our spatial intuition. Classically, we are able to substitute any
sentence for the proposition A, and hence the propositional law should also apply
here. But this does not entirely capture our spatial intuition. The second sentence
is not precise: is the Euro in the same pocket, or in different pockets? Phrased
differently, is the expression ‘one of my pockets’ in both conjuncts referring to the
same pocket or to two different pockets? Classically, to be precise, one would have
to explicitly describe this situation: “I have a Euro in one of my pockets, and I
have a Euro in another of my pockets.”

Notice how the explicit difference in location, which we classically need to
describe to be precise, can also be resolved differently: by changing the way we
interpret the conjunction—no longer classically, but spatially: “I have a Euro in
one of my pockets, and separately, I have a Euro in one of my pockets.” Surely the
two pockets must now be different pockets, because how could otherwise one fact
be separate from the other fact?

We introduce the following symbols to abbreviate our intuition. We write
(x ↪→ y) to express that the location x has the value y. If we interpret x as
being the location of one of my pockets and y as the value of one Euro, then
(x ↪→ y) expresses that “I have a Euro in one of my pockets”. Further, we introduce
the spatial conjunction, or separating conjunction, by using ∗ as a connective.
Symbolically, we can evaluate the following formulas:

1. ∃x(x ↪→ y),

2. (∃x(x ↪→ y)) ∧ (∃x(x ↪→ y)),

3. (∃x(x ↪→ y)) ∗ (∃x(x ↪→ y)),

4. ∃x((x ↪→ y) ∧ ∃z(z ̸ .= x ∧ (z ↪→ y))).

Notice how the first two formulas are equivalent (due to the classical law that A∧A
is equivalent to A). However, the second and third formulas are not equivalent.
The second formula expresses that at least one pocket has a Euro in it. The
third formula expresses that at least two (different) pockets have a Euro in them.
Intuitively, the third and fourth formula are again equivalent, where in the fourth
formula we classically express that the second pocket is different from the first
pocket.

If we scale up our argument to more and more pockets (for example, imagine
the many pockets of a handyman), we observe the following pairs of equivalences:

• (∃x(x ↪→ y)) ∗ (∃x(x ↪→ y)) ∗ (∃x(x ↪→ y)),

• ∃x((x ↪→ y) ∧ ∃z(z ̸ .= x ∧ (z ↪→ y) ∧ ∃w(w ̸ .= x ∧ w ̸ .= z ∧ (w ↪→ y)))).

and

29

• (∃x(x ↪→ y)) ∗ (∃x(x ↪→ y)) ∗ (∃x(x ↪→ y)) ∗ (∃x(x ↪→ y)),

• ∃x((x ↪→ y) ∧ ∃z(z ̸ .= x ∧ (z ↪→ y) ∧ ∃w(w ̸ .= x ∧ w ̸ .= z ∧ (w ↪→ y)∧
∃v(v ̸ .= x ∧ v ̸ .= z ∧ v ̸ .= w ∧ (v ↪→ y))))).

We see how, classically, we need to describe more and more facts that state that
the locations are all pairwise different, whereas with our spatial intuition we simply
declare these locations to be separate by the separating conjunction connective.
The separation is either described ‘bottom up’ using explicit equational facts, or
‘top down’ using separating connectives.

Especially in the setting of programming with pointers, this spatial intuition is
natural to reason about. Often, data structures are laid out in separate parts of
the memory, and describing explicitly that these parts of the memory are separate
quickly grows in complexity. Consider, for example, the circular singly-linked list
of Figure 2.1. Whenever we informally reason about the data structure of a linked
list, we mentally model the memory state by means of a picture in which each
box represents some storage space in memory, and pointers to boxes represent the
address value of the location of that memory space. Already by choosing such
a picturesque model, we have the graphical intuition that locations in space are
separate: drawing two boxes on paper means the two boxes have to be separate.
However, classically, one would have to explicitly describe that to be precise.

Consider running through the execution of a program that manipulates the
memory states of a linked list:

(a) In the initial state we have one item which is linked back to itself. This is
the so-called head of the list. In Figure 2.1 we see this situation, where x is
a variable that points to the location of the box, and the value of the box
points to itself. Symbolically, we would describe this by stating:

(x ↪→ x) ∧ ∀z((z ↪→ −) → z = x)

where (z ↪→ −) means ∃y(z ↪→ y). This describes that the value of x
represents a location, which is allocated since we see it points to a box, and
the value of the location is the address of itself, since we see a pointer from
inside the box to the edge of the box itself. The second conjunct expresses
that there are no other locations. We can abbreviate this formula, by simply
writing:

(x 7→ x)

where the symbol 7→ indicates that the location is the sole location that is
allocated.

(b) Next, we allocate new space. So y now points to a location that was previously
unallocated, but now it is allocated since it takes up space as a box. We
obtain the ‘paperclip’ state, in which the box to which x points still points to
itself, but also the box to which y points points to the box to which x points.
Symbolically we have

(x 7→ x) ∗ (y 7→ x)

30 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

x

(a) Initial state

x y

(b) After creation

x y

(c) Relinking

Figure 2.1: Three different memory states of a circular singly-linked list.

since we can imagine to split the memory in two parts: the box on the left,
and the new box on the right. The box on the left still points to itself. The
box on the right points to the box on the left.

(c) Finally, we relink the previous box to the new box: the box to which x points
itself now points to the box to which y points. Symbolically, we express this
situation as:

(x 7→ y) ∗ (y 7→ x)

and this description is quite precise. We know, from the picture, that x and y
must point to different boxes, because we have drawn these boxes apart from
each other. Notice that the two components each point to each other. The
components, when viewed isolated from each other, have dangling pointers.
However, by putting the components in separating conjunction, these former
dangling pointers now resolve to the proper location, being the box in each
component.

This simple example convincingly shows that pointer structures can be described,
component-wise, using the connective of separating conjunction. Separating con-
junction directly captures the intuition that the locations to which one refers to are
separated among the components of the conjunction. Further examples of cyclic
data structures and containers can be given: doubly-linked lists, tree structures
with pointers from parents to children but also back links from children to parents.
In fact, our intuition of these pointer structures quite naturally transfers to the
memory states of object-oriented programs, in which the precise identity of objects
is abstracted away, where different pointers coming out of a box represent the
different fields of an object.

Another important aspect of spatial intuition is hypothetical space: the question
what happens if one would allocate locations according to a description, where
those locations are previously not allocated. To describe hypothetical situations
we introduce the connective −∗ that is called separating implication, or the magic
wand. Consider Figure 2.2 in which there are two situations depicted. In the
situation on right we are dealing with a hypothetical extension of the situation
depicted on the left, as represented by a dashed arrow. We can describe these
situations as follows:

(a) This situation is described precisely by the formula

(x 7→ y) ∧ (y ̸↪→ −).

31

x y

(a) Original state

x y

(b) Original state and extended state

Figure 2.2: Hypothetical extension of locations.

The location pointed to by y is not allocated, as depicted by a crossed-out
box. Hence both the box pointed to by x, and to which y points, are dangling
pointers: the location to which is pointed is not allocated.

(b) Now, we could imagine a hypothetical extension of the state, in which the
box pointed to by y actually exists and points back to x. This hypothetical
situation can be described by the formula

(x 7→ y) ∧ (y ̸↪→ −) ∧ ((y 7→ x) −∗ ((x 7→ y) ∗ (y 7→ x))).

The connective −∗ describes on the right of the connective what holds of
the resulting, hypothetical memory state after the current memory state
is extended by any separate part of the memory for which the left of the
connective holds.

In this chapter we shall formally introduce separation logic. In separation logic
we aim to formally capture our intuition as given above. We introduce the language
in which formulas are described, their interpretation by means of structures. In this
chapter we focus on the model theoretic development of the semantics of separation
logic. Next chapter we develop the proof theory for reasoning about formulas of
separation logic.

Technically, we restrict ourselves to classical first-order separation logic. By
classical we mean that we interpret the formulas of first-order logic embedded in
separation logic classically. Although the language of separation logic extends the
language of first-order logic, not all classical laws such as the law of excluded middle
hold for all classical separation logic formulas. The embedding of first-order logic
in separation logic is also called the ‘pure’ part of separation logic; it is pure since
it does not depend on our spatial intuition. Further, we restrict to first-order logic
and do not develop higher-order separation logic, to keep the presentation light. In
principle, nothing restrains us from allowing higher-order variables and higher-order
quantification in separation logic too. Furthermore, just like in Chapter A that
introduced first-order logic, we keep terms orthogonal to our discussion. Although
terms can be easily added to the syntax, and we can interpret constant symbols
and function symbols specially as individuals and functions, it is not necessary
to do so—we do not miss out any expressivity of the logic, but we get simpler
definitions by leaving them out.

Throughout this chapter, we will introduce different classes of separation logic
formulas. An overview of these classes of formulas is given in Figure 2.3.

32 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

formulas of separation logic

formulas without magic wand

formulas of separation logic light

semi-pure formulas

formulas of classical logic

Figure 2.3: Overview of the classes of formulas of separation logic. Formulas are
included from bottom to top.

2.1 Syntax of separation logic
The language of separation logic imports many of the concepts already present
in classical logic, such as variables and signatures. Formulas, or synonymously
assertions, of separation logic extend the formulas of classical logic in two aspects:
first, we add a new primitive formula, called points-to, denoted by ↪→, and, sec-
ondly, we add two new connectives, called separating conjunction and separating
implication, denoted by ∗ and −∗, respectively. After extending formulas, some
concepts imported from classical logic require some adjustments to the setting of
separation logic. We also introduce new concepts that are were not yet present in
classical logic.

In our presentation of the assertions of separation logic, we shall not introduce
terms at first. This makes a comparison with our presentation of classical logic
easier, and also makes the technical development easier to follow. However, by
taking this approach, we do not lose any expressive power: later in this section we
add terms in an orthogonal way, regardless of whether the assertion language of
classical logic or separation logic is used.

Based on a given signature (see Definition A.1.2), we construct the formulas of
separation logic. Although we follow [125] in the definition of the syntax (and later
also the standard semantics) of the assertion language of separation logic, we now
work in this more general setting with signatures and we use a different atomic
‘weak points to’ formula. For the remainder of this section, we fix a first-order
signature Σ that consists of constant symbols, similar to what we did for classical
logic. It should be clear from context whether one speaks of formulas of separation
logic or formulas from classical logic. In this chapter, ‘formula’ refers to ‘formula
of separation logic’ unless explicitly mentioned otherwise.

Definition 2.1.1 (Formulas). A formula is constructed inductively as follows:

1. ⊥ is a formula,

2. (x
.
= y) is a formula if x and y are individual variables,

2.1. SYNTAX OF SEPARATION LOGIC 33

3. (x ↪→ y) is a formula if x and y are individual variables,

4. C(x1, . . . , xn) is a formula if C is a constant symbol of arity n and x1, . . . , xn
are individual variables,

5. (ϕ→ ψ) is a formula if ϕ and ψ are formulas,

6. (∀xϕ) is a formula if ϕ is a formula and x an individual variable,

7. (ϕ ∗ ψ) is a formula if ϕ and ψ are formulas,

8. (ϕ −∗ ψ) is a formula if ϕ and ψ are formulas.

All formulas are constructed by one of these eight clauses. Alternatively, we can
define formulas by the following abstract grammar:

ϕ, ψ ::= ⊥ | (x
.
= y) | (x ↪→ y) | C(x1, . . . , xn) |

(ϕ ∗ ψ) | (ϕ −∗ ψ) | (ϕ→ ψ) | (∀xϕ)

Note that in separation logic, we prefer using false and true instead of ⊥ and ⊤,
where false abbreviates ⊥, and true abbreviates (⊥ → ⊥).

The first four clauses construct primitive formulas, the last four clauses construct
complex formulas. Formulas can still be regarded as finite sequences of symbols,
but we consider the newly introduced symbols ↪→, ∗, −∗ to be separation symbols
disjoint from the earlier logical symbols and non-logical symbols. It is easy to verify
that the set of formulas, as defined above, is recursive.

We speak of formulas in the usual way, except for the new clauses. The primitive
formula (x ↪→ y) is called points-to (as in ‘x points to y’). As complex formulas,
two separating connectives are given: (ϕ ∗ ψ) is a separating conjunction, and
(ϕ −∗ ψ) is a separating implication. The latter connective is also called the magic
wand by some authors.

Again, when proving meta-properties of formulas, we proceed by induction on
the complexity of formulas. There are different obvious measures of complexity:
the height of a formula, by viewing the formula as a parse tree and taking the
height of that tree, or the length of a formula, by viewing a formula as a sequence
of symbols and taking the length of that sequence.

In a certain sense, Definition 2.1.1 includes all first-order formulas of classical
logic (cf. Definition A.1.4). Regarding formulas as sequences of symbols, if in
that sequence there is no separation symbols present then the formula must also
be a (first-order) formula of classical logic. The latter formulas are also called
pure formulas or heap-independent formulas. If a formula, seen as a sequence of
symbols, contains a separation symbol we call it impure or heap-dependent. If
a formula is impure but does not contain separating connectives (i.e. contains
primitive points-to constructs) then we call it semi-pure.

As such, we may use the usual classical abbreviations, given in Definition A.1.5,
too in separation logic. This means we have access to (logical) disjunction, con-
junction, bi-implication and existential quantification. Further, we also use these

34 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

abbreviations in the case where they are used to compose heap-dependent formulas.
Specifically, we may use separating connectives nested under logical connectives or
quantifiers.

We further have the separation symbols ↪̸→, emp, 7→ and we use the symbol −
as a placeholder, by introducing the following abbreviations:

(x ↪̸→ y) abbreviates (¬(x ↪→ y))

(x ↪→ −) abbreviates (∃z(x ↪→ z))

(x ↪̸→ −) abbreviates (¬(x ↪→ −))

emp abbreviates (∀x(x ↪̸→ −))

(x 7→ y) abbreviates ((x ↪→ y) ∧ (∀z, w((z ↪→ w) → x
.
= z)))

(x 7→ −) abbreviates (∃z(x 7→ z))

where z is a fresh individual variable (i.e. not the same as x). We may speak of
‘locations’ being on the left-hand side of either ↪→ or 7→, and ‘values’ being on
the right-hand side of either ↪→ or 7→. We may speak about these formulas in the
following way:

• for (x ↪→ y) we say ‘x points to y’ or ‘location x has value y’,

• for (x ↪→ −) we say ‘(at least) x is allocated’,

• for (x 7→ y) we say ‘strictly x points to y’ or we may say ‘x points to y and
only x is allocated’,

• for (x 7→ −) we say ‘x is solely allocated’ or ‘x is allocated alone’,

• for emp we say ‘nothing is allocated’.

When speaking of the negated forms, some care is needed:

• for (x ↪̸→ y) we say ‘x does not point to y’ or ‘x has not the value y’, but
note that does not necessarily mean x is not allocated,

• for (∀y(x ↪̸→ y)) we say ‘x has no value’ or ‘x is not allocated’,

• equivalently, for (x ↪̸→ −) we say ‘x is not allocated’ (but that does not say
anything about other allocations).

Remark 2.1.2. In some texts on separation logic, the symbols emp and 7→ are taken
as primitive formula (instead of ↪→). In this case we recover the same language as
we have here by taking (x ↪→ y) as an abbreviation of (true ∗ (x 7→ y)). In other
texts the ‘weak’ points to is taken as primitive (as in [187] and [70]). The reason
we take ↪→ as primitive is to avoid the use of separating connectives in expressing
our abbreviations, while still being able to express that an element is not allocated:
all abbreviations are semi-pure.

2.2. STANDARD SEMANTICS 35

The same conventions for reducing parentheses are employed, with the following
two additions to precedence: separating conjunction precedes logical conjunction
(and so also disjunction and logical implication), and separating implication precedes
logical implication (and so also bi-implication). All separating connectives also
associate to the right. For example, P (x) ∗ Q(x) ∧ P (x) disambiguates to ((P (x) ∗
Q(x)) ∧ P (x)), and P (x) → Q(x) −∗ P (x) → Q(x) disambiguates to (P (x) →
((Q(x) −∗ P (x)) → Q(x))). However, we shall try to use parentheses, even if not
necessary by these disambiguation rules, to present formulas as clearly as possible
also for readers less familiar with separation logic.

The concept of variable occurrences in formulas can be imported in a straight-
forward manner. Formulas in separation logic can also be viewed as a parse tree,
in which variables occurs at leaves. We also have the sets FV (ϕ), and BV (ϕ), that
denote the variables that occur free in ϕ, and the variables that occur bound in ϕ,
respectively. Revisiting Definition A.1.6 (Free and bound variables), we need to
add the following clauses:

• FV (x ↪→ y) = {x, y} and BV (x ↪→ y) = ∅,

• FV (ϕ ∗ ψ) = FV (ϕ) ∪ FV (ψ) and BV (ϕ ∗ ψ) = BV (ϕ) ∪ BV (ψ),

• FV (ϕ −∗ ψ) = FV (ϕ) ∪ FV (ψ) and BV (ϕ −∗ ψ) = BV (ϕ) ∪ BV (ψ).

As such, we also import the following concepts: a formula without free variables is
a sentence, a context is a list of formulas, and a theory is a set of sentences.

Similarly, we have also the application π(ϕ) of a renaming π to a formula ϕ.
Revisiting Definition A.1.9 (Variable renaming), we need to add the following:

• π(x
.
= y) = (π(x)

.
= π(y)),

• π(ϕ ∗ ψ) = (π(ϕ) ∗ π(ψ)),

• π(ϕ −∗ ψ) = (π(ϕ) −∗ π(ψ)).

Also (capture-avoiding) substitution of variables for variables works in the same
way as in classical logic. We can also add terms to separation logic in the same
manner as is done in Section A.5.

2.2 Standard semantics

The standard semantics of separation logic formula is given in the style of Tarski,
extending the semantics of classical logic. There are two important aspects to
consider before we define the satisfaction relation formally.

The first aspect is that we employ the same structures that we used for giving
semantics to classical logic: this ensures that the semantics of the heap-independent
formulas of separation logic coincides with their classical semantics. Further,
terms are evaluated without depending on the heap. So the semantics of terms in
separation logic completely coincides with the semantics of terms in classical logic.

36 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

The second aspect is the context in which we define the satisfaction relation.
In separation logic, we employ another concept, next to structures and valuations,
called the heap. A heap is represented by a partial function. In the standard
semantics we furthermore restrict ourselves to finitely-based partial functions,
meaning that only finitely many locations are assigned a value by the partial
function representing the heap.

Let A = (A, I) be a structure (see Definition A.2.3). A finite heap of A is a
finitely-based partial function from A to A. A heap thus assigns to finitely many
elements of the domain of the structure a value, which is also an element of the
domain of the structure. Let h be a heap. By dom(h) we denote the domain of the
heap h, that is, the set of all elements of A on which h is defined. If a is an element
for which h is undefined we also write h(a) = ⊥ (where we implicitly know ⊥ ̸∈ A
since ⊥ is some dummy element), and if a is an element for which h is defined we
write h(a) = a′ for some value a′ ∈ A.

We may also speak of locations to mean elements that are (possibly) in the
domain of a heap. A finite heap thus assigns finitely many locations to values.
Note that speaking of just a domain may be unclear: is one speaking of the domain
of a structure, or the domain of a heap? The latter, however, is a (finite) subset of
the former.

We define three operations on finite heaps. There is the empty heap, denoted by
ϵ. The empty heap is undefined on every element of the domain, that is, dom(ϵ) = ∅.
Clearly the domain of the empty heap is finite. Given two elements a, a′ of A. By
h[a := a′] we denote the heap obtained after applying a heap update operation that
sets location a to the element a′. Formally,

h[a := a′](e) =


a′ if a = e

h(e) if a ̸= e and h(e) is defined
undefined otherwise

where e ranges over elements of the domain A of our structure. We now thus have
dom(h[a := a′]) = dom(h) ∪ {a}, and so the domain remains finite. By h[a := ⊥]
we denote the heap obtained after applying a heap clear operation that clears
location a from the domain. Formally,

h[a := ⊥](e) =


undefined if a = e

h(e) if a ̸= e and h(e) is defined
undefined otherwise

and thus dom(h[a := ⊥]) = dom(h) \ {a}, and also here the domain remains finite.
We have the property of heap extensionality : given two finite heaps h and g,

then h = g if and only if dom(h) = dom(g) and h(a) = g(a) for every a ∈ dom(h).
Intuitively, we could split and merge heaps. A finite heap that has more than

one element in its domain can be partitioned into two finite heaps, by selecting
for each element in the domain to what partition it should belong after the split.
Similarly, given two finite heaps that have a disjoint domain, we can form a new

2.2. STANDARD SEMANTICS 37

finite heap by merging the two. After splitting or merging, the values assigned to
locations remain the same. To formalize these intuitions, we introduce the concept
of a heap partitioning.

Let h1 and h2 be finite heaps with disjoint domains, dom(h1) ∩ dom(h2) = ∅.
We sometimes write h1 ⊥ h2 to abbreviate dom(h1) ∩ dom(h2) = ∅. Now h1 ⊎ h2
denotes a finite heap that can be split into two parts, h1 and h2, so has as domain
the union of the underlying domains, dom(h1 ⊎ h2) = dom(h1) ∪ dom(h2). Every
location in the resulting heap has the value of the corresponding underlying heap,
(h1 ⊎ h2)(e) = h1(e) if e ∈ dom(h1) and (h1 ⊎ h2)(e) = h2(e) if e ∈ dom(h2).
Locations outside of the domain remain undefined, (h1 ⊎h2)(e) = ⊥ if e ̸∈ dom(h1)
and e ̸∈ dom(h2). Thus one can think of h1 ⊎ h2 as a merged heap. It does not
exists when h1 and h2 both assign a value to the same location, even when both h1
and h2 assign the same value to shared locations. Although the latter makes sense
when merging heaps, its fails our intuition in the other direction, when splitting a
heap in two parts. Thus, we write h ≡ h1 ⊎ h2 to mean h1 ⊥ h2, that h1 and h2
have disjoint domains—and so the finite heap h1 ⊎ h2 exists, and h = h1 ⊎ h2, and
we say that there is a heap partitioning.

We are now able to give the formal definition of the satisfaction relation. Our
definition is an extension of Definition A.2.5 in two ways: we additionally consider
a finite heap h, and we have new clauses corresponding to points-to, separating
conjunction, and separating implication.

Definition 2.2.1 (Satisfaction relation). Given a structure A = (A, I), a valuation
ρ of A, a finite heap h of A, and a separation logic formula ϕ. The satisfaction
relation A, h, ρ |=SSL ϕ is defined inductively on the structure of ϕ:

• A, h, ρ |=SSL ⊥ never holds,

• A, h, ρ |=SSL (x
.
= y) iff ρ(x) = ρ(y),

• A, h, ρ |=SSL (x ↪→ y) iff h(ρ(x)) is defined and h(ρ(x)) = ρ(y),

• A, h, ρ |=SSL C(x1, . . . , xn) iff (ρ(x1), . . . , ρ(xn)) ∈ CI ,

• A, h, ρ |=SSL ϕ→ ψ iff A, h, ρ |=SSL ϕ implies A, h, ρ |=SSL ψ,

• A, h, ρ |=SSL ∀xϕ iff A, h, ρ[x := a] |=SSL ϕ for every a ∈ A,

• A, h, ρ |=SSL ϕ ∗ ψ iff A, h1, ρ |=SSL ϕ and A, h2, ρ |=SSL ψ
for some h1, h2 such that h ≡ h1 ⊎ h2,

• A, h, ρ |=SSL ϕ −∗ ψ iff A, h′, ρ |=SSL ϕ implies A, h′′, ρ |=SSL ψ
for every h′, h′′ such that h′′ ≡ h ⊎ h′.

The superscript SSL stands for Standard Separation Logic. In the third clause
it is superfluous to state that h(ρ(x)) is defined, since we know that ρ(y) cannot
be the dummy element ⊥ and hence ρ(x) ∈ dom(h). Further, since we restrict
ourselves to first-order signatures, the valuation ρ of A only assigns individual

38 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

variables a value. We shall leave out the discussion how the satisfaction relation is
defined for empty structures, since it is similar to classical logic.

Based on this definition it is now also possible to give semantics of abbreviations,
similar to what we did in the case of classical logic. Also similar to classical logic, we
have the coincidence condition and invariance under renaming. Both propositions
are with respect to a fixed heap.

Proposition 2.2.2 (Coincidence condition). Given that ρ[FV (ϕ)] = ρ′[FV (ϕ)], it
follows that A, h, ρ |=SSL ϕ if and only if A, h, ρ′ |=SSL ϕ.

Proposition 2.2.3 (Invariance under renaming). Given a renaming π such that
all free variables of ϕ stay the same, i.e. π(v) = v for all v ∈ FV (ϕ). It follows
that A, h, ρ |=SSL ϕ if and only if A, h, ρ |=SSL π(ϕ).

Sometimes, it is more convenient to work with the set of heaps and valuations
by which a formula is satisfied given a particular structure.

Definition 2.2.4 (Denotation). The denotation of a formula AJϕKSSL is defined:

AJϕKSSL = {(h, ρ) | A, h, ρ |=SSL ϕ}.

Similar as before, we may drop SSL if clear from context. We write ϕ ≡A ψ
for AJϕK = AJψK, and say that ϕ and ψ are equivalent.

Note that the we can also add terms to separation logic, completely analogous
to what we did in Section A.5. An important result also holds for separation logic:

Lemma 2.2.5 (Substitution lemma).

A, h, ρ |=SSL ϕ[x := t] if and only if A, h, ρ[x := ρ(t)] |=SSL ϕ.

We write A, h |=SSL ϕ to mean A, h, ρ |=SSL ϕ for all valuations ρ, and we write
A |=SSL ϕ to mean A, h |=SSL ϕ for all finite heaps h. Given a sentence that is
satisfied, using the coincidence condition we can obtain that it is also satisfied by
the same structure but with any other valuation: the valuation has no influence
on whether a sentence is satisfied by the structure, but the heap does have such
influence. So if ϕ is a sentence, A, h |=SSL ϕ if and only if A, h, ρ |=SSL ϕ for some
valuation ρ.

Given a sentence ϕ, we write |=SSL ϕ to mean that A |=SSL ϕ for all structures
A, and we then say that ϕ is valid. Valid sentences in separation logic thus are
properties that hold for all finite heaps.

Given a theory, i.e. a set of sentences Γ, we write A, h |=SSL Γ to mean that
all sentences in Γ are satisfied by A and finite heap h, that is, A, h |=SSL ϕ for all
ϕ ∈ Γ. We may also speak of ‘Γ is satisfied by A and h’. A theory Γ is satisfiable
if there exists a structure A and heap h such that A, h |=SSL Γ. A theory Γ is
finitely satisfiable if every finite subset of Γ is satisfiable. Note that the finite heap
is considered existentially when speaking of (finite) satisfiability in separation logic.

We write Γ |=SSL ϕ to mean A, h |=SSL ϕ for all structures A and finite heaps
h such that A, h |=SSL Γ, and say that ϕ is a semantic consequence of Γ.

2.2. STANDARD SEMANTICS 39

By ThSSL(A) we mean the set of all sentences ϕ such that A |=SSL ϕ, and we
speak of the separation logic theory of A. Note that we have ThCL

1 (A) ⊆ ThSSL(A),
that is, the first-order theory of A is included in its separation logic theory. Further,
a separation logic theory contains only sentences that are universal in the heap,
i.e. sentences that hold for every finite heap.

Proposition 2.2.6. For any sentence ϕ we have A, h |=SSL ϕ or A, h |=SSL ¬ϕ.

However, contrasting to the first-order theory of a structure, which is necessarily
complete, we do not have that the separation theory of a structure is necessarily
complete. To see why, consider the counter-example used in the following proof.

Proposition 2.2.7. ThSSL(A) is complete if and only if the domain of A is empty.

Proof. Assume the domain of A is not empty. It is sufficient to show there is a
sentence ϕ such that there is a heap h1 such that A, h1 |=SSL ϕ, and there is a
heap h2 such that A, h2 |=SSL ¬ϕ. Take ϕ to be emp. Now h1 can be simply ϵ,
the empty heap. And h2 is any non-empty heap (which exists since the domain of
our structure is non-empty).

Assume ThSSL(A) is not complete. Thus there is a sentence ϕ such that
it is not the case that A |=SSL ϕ or A |=SSL ¬ϕ. So there exists h1, h2 such
that A, h1 |=SSL ¬ϕ and A, h2 |=SSL ϕ. Now h1 and h2 are not equal due to
Proposition 2.2.6. If, however, A is empty then there is only one heap and h1 and
h2 thus must be equal. So A must be non-empty.

Another difference is that the standard semantics of separation logic is not
compact, in contrast to classical logic (see Theorem A.2.10). So see why, consider
the following counter-example: every finite subset of an infinite set of sentences
expressing that the domain of the heap contains at least so many elements is
satisfiable, but clearly no finite heap satisfies the entire set.

Lemma 2.2.8 (Non-compactness standard semantics). It is not the case that Γ is
finitely satisfiable implies that Γ is satisfiable.

Proof. Let x0, x1, x2, . . . be individual variables. We construct a set of sentences Γ
which is finitely satisfiable, but not satisfiable:

Γ = {ϕn | n ∈ N}

where ϕn expresses that there are at least n+ 1 allocated and distinct elements:

ϕn = ∃x0, . . . , xn. (
∧

0≤i≤n

(xi ↪→ −)) ∧
∧

0≤i<j≤n

xi ̸= xj .

Clearly, Γ is infinite. For any finite subset of Γ, there must exist a maximum m
such that ϕm ∈ Γ. Then we take a structure with as domain N and a finite heap
in which the locations 0, . . . ,m are allocated (their value does not matter). Every
formula ϕi for 0 ≤ i ≤ m is satisfied. This construction works for every finite
subset of Γ, so Γ is finitely satisfiable. However, Γ is not satisfiable, since for every
ϕi ∈ Γ there always exists ϕj ∈ Γ with j > i, and so we cannot construct a finite
heap that satisfies all sentences.

40 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

Above it is also possible to give ϕn using separating conjunctions, namely by

ϕn = ∃x0, . . . , xn. (x0 ↪→ −) ∗ . . . ∗ (xn ↪→ −).

From the semantics of separating conjunction, it follows that xi ̸= xj for every
0 ≤ i < j ≤ n: if it were the case that xi = xj for i ̸= j then one cannot split the
heap into disjoint parts that satisfies all components of the conjunction.

The failure of compactness has important ramifications to the design of a proof
system for separation logic.

Corollary 2.2.9. There is no sound, complete, finitary proof system for SSL.

Proof. Suppose there would be a finitary proof system SSL that allows us to define
what it means that a sentence ϕ is a syntactic consequence of a theory Γ, denoted
Γ ⊢SSL ϕ, and suppose that it is complete with respect to the standard semantics:

Γ |=SSL ϕ implies Γ ⊢SSL ϕ.

Now we have that compactness follows from it: Γ is finitely satisfiable if and only
if Γ is satisfiable. To see why, it is sufficient to show that if Γ is not satisfiable
then Γ is not finitely satisfiable. Suppose some theory Γ is not satisfiable, then
Γ |=SSL ⊥ is the case. By completeness, we then have Γ ⊢SSL ⊥. By the finitary
nature of our proof system, there must only be finitely many sentences in Γ on
which the deduction is based. Let Γ0 denote that finite subset of Γ such that the
same deduction can be used to witness Γ0 ⊢SSL ⊥. Thus Γ is not finitely satisfiable.
Hence, the existence of a complete finitary proof system is in contradiction with
the above non-compactness proposition.

2.3 Full semantics
One cause of non-compactness in the previous section is the assumption that we
deal with finite heaps only. In this section, we consider a more liberal semantics:
the full semantics of separation logic. In the full semantics, we leave out the
restriction that we only consider heaps that are finite. Recall the discussion in
the introduction chapter that motivates our choice (see Section 1.3). Does this
modification resolve the problem of non-compactness, or will the resulting semantics
also be non-compact? That is the main question we answer in this section.

Again, let A = (A, I) be a structure. A heap of A is a partial function from A
to A. Every finite heap is a heap, and also every function from A to A is a heap.
If A is infinite, then there are heaps that are not finite heaps. In the case A is
finite, then every heap is a finite heap. A heap that is not a finite heap is called an
infinite heap.

The concepts we have introduced earlier are easily adapted to the new situation.
Let h be a (finite or infinite) heap. The domain dom(h) is the set of locations for
which h is defined. For infinite heaps, dom(h) is an infinite set. The empty heap
remains. The two operations of heap update h[a := a′] and heap clear h[a := ⊥]
can be extended to infinite heaps: their definition remains the same. However,

2.3. FULL SEMANTICS 41

dom(h[a := a′]) and dom(h[a := ⊥]) remain infinite if dom(h) is infinite. Also the
concept of heap partitioning can be extended to infinite heaps: we have that either
h1 or h2 is an infinite heap if h ≡ h1 ⊎ h2 and h is an infinite heap.

Similarly, we can adapt the satisfaction relation, which for the full semantics we
denote by A, h, ρ |=FSL ϕ, where the superscript FSL stands for Full Separation
Logic. Revisiting Definition 2.2.1, we now have the following adapted clauses:

Definition 2.3.1 (Satisfaction relation). Given a structure A = (A, I), a valuation
ρ of A, a heap h of A, and a separation logic formula ϕ. The satisfaction relation
A, h, ρ |=FSL ϕ is defined inductively on the structure of ϕ:

• . . .

• A, h, ρ |=FSL ϕ ∗ ψ iff A, h1, ρ |=FSL ϕ and A, h2, ρ |=FSL ψ for some h1, h2
such that h ≡ h1 ⊎ h2,

• A, h, ρ |=FSL ϕ −∗ ψ iff A, h′, ρ |=FSL ϕ implies A, h′′, ρ |=FSL ψ for every
h′, h′′ such that h′′ ≡ h ⊎ h′.

where the heaps h, h1, h2, h′, h′′ range over (finite or infinite) heaps, not only finite
heaps as in the standard semantics.

With this satisfaction relation, we can also introduce the usual no(ta)tions of
validity, semantic consequence, and theories, but we have to make sure that we
consider all, finite or infinite, heaps universally. For example, we write A |=FSL ϕ
to mean A, h |=FSL ϕ for all (finite or infinite) heaps h.

Comparing the standard semantics and the full semantics with respect to the
satisfaction relation, we can see some obvious connections. For structures, the full
semantics also has the first-order theory included in its separation theory: we have
ThCL

1 (A) ⊆ ThFSL(A). If the domain of our structure is finite, every heap is also a
finite heap: so there is no distinction between the two semantics. However, there
are structures with an infinite domain in which the full semantics and standard
semantics differ in the sentences they satisfy.

Consider the sentence ϕ = ∃x.(x ↪→ −) −∗ ⊥, and take a structure N with the
naturals N as domain. The sentence is considered false with respect to the standard
semantics, but the sentence is satisfiable with respect to the full semantics.

• (SSL) Let h be an arbitrary finite heap. Let m be the maximum location of
h, or 0 if h is empty. Then surely ϵ[m+ 1 := 0] is disjoint from h. However,
N, h[m+ 1 := 0] ̸|=SSL ⊥.

• (FSL) To show satisfiability, we give a heap h such that N, h |=FSL ϕ. Take
any function for h such that dom(h) = N, i.e. all locations are allocated. Now
there is no disjoint h′ that is not empty. Hence, for any choice of value for x,
the formula (x ↪→ −) −∗ ⊥ is vacuously satisfied.

To further explore the semantics of separation logic, we introduce the following
abbreviation (also called the box modality) that we characterize below:

■ϕ abbreviates ⊤ ∗ (emp ∧ (⊤ −∗ ϕ))

42 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

Formulas placed directly within the context of the box modality are interpreted
with respect to an arbitrary heap. Thus, this modality expresses a limited form of
second-order universal quantification. One may think of the box modality acting
as a binder of the points-to construct.

Proposition 2.3.2. The following holds:

• A, h, ρ |=SSL ■ϕ if and only if A, h′, ρ |=SSL ϕ for every finite heap h′,

• A, h, ρ |=FSL ■ϕ if and only if A, h′, ρ |=FSL ϕ for every heap h′.

Proof. We show it for the standard semantics first.
A, h, ρ |=SSL ⊤ ∗ (emp ∧ (⊤ −∗ ϕ))

if and only if
A, ϵ, ρ |=SSL ⊤ −∗ ϕ

if and only if
A, h′, ρ |=SSL ϕ for every finite heap h′.
The proof for the full semantics is similar, but quantifying over all heaps h′.

Dually, we introduce the diamond modality

♦ϕ abbreviates ¬■¬ϕ

which expresses a limited form of second-order existential quantification.

Corollary 2.3.3. The following holds:

• A, h, ρ |=SSL ♦ϕ if and only if A, h′, ρ |=SSL ϕ for some finite heap h′,

• A, h, ρ |=FSL ♦ϕ if and only if A, h′, ρ |=FSL ϕ for some heap h′.

The above box modality can be used to characterize finiteness of the domain of
the structure in the case of full separation logic. Let fin abbreviate

■(tot(↪→) ∧ inj (↪→) → surj (↪→))

where the abbreviations tot , inj , surj of Proposition A.2.13 can be reused, but
applied to points-to by considering the primitive separation logic formula (x ↪→ y)
to be obtained as if ↪→ were a 2-ary relation (cf. the abbreviations below).

Proposition 2.3.4. A |=FSL fin if and only if the domain of A is finite.

Proof. Recall Proposition A.2.12, that a set is finite if and only if every injective
total function on that set is a surjection. In contrast to Proposition A.2.13, we do
not need fun(↪→) because in the semantics of separation logic we already have that
heaps are partial functions from which this property holds for every heap.

The above characterization fails for standard separation logic. In that semantics,
the formula is valid: if the domain of the structure is finite then every injective
total heap is already a surjection, and if the domain of the structure is infinite then
there is no finite heap that satisfies tot(↪→).

2.3. FULL SEMANTICS 43

Going further, we can give a sufficient condition for the finiteness of the domain
of the heap. Surely, for the standard semantics, this condition is useless since every
heap already is finite. However, in the full semantics, the condition can be useful
in certain contexts to restrict attention to heaps with a finite domain. We extend
our signature with an additional 1-ary predicate symbol, P . We then have the
following sentence:

∀x. P (x) ↔ (x ↪→ −) (2.1)

which expresses that the extension of the predicate P coincides with the domain
of the current interpretation of the heap. This sentence can not be valid if the
structure has at least one element in its domain, since each structure gives an a
priori interpretation of P independently of the heap, which may satisfy the formula
for one heap (say, the empty heap) but not for another (say, the non-empty heap).

However, we are still able to use the formula to capture the domain of the heap
at top-level. How this can be used will become clear later. To express that the
extension of P is finite we adapt our previous formula in the following way:

■(totP (↪→) ∧ injP (↪→) → surjP (↪→)) (2.2)

where we introduce the following relativized abbreviations:

• injP (↪→) abbreviates ∀x, y, z. P (x)∧P (y)∧P (z)∧(x ↪→ z)∧(y ↪→ z) → x
.
= y,

• totP (↪→) abbreviates ∀x. P (x) → ∃y. P (y) ∧ (x ↪→ y),

• surjP (↪→) abbreviates ∀y. P (y) → ∃x. P (x) ∧ (x ↪→ y).

Even in case the domain of our structure is infinite and in the full semantics the
box modality universally quantifies over all heaps, the above formula expresses
that all total injective functions on P must be surjective on P , and thus that P is
finite (for the same reason as in Proposition A.2.12).

Given that we can capture the domain of the heap at the top-level by a
predicate P , and that we can express that the extension of P is finite, we have also
non-compactness for the full semantics.

Lemma 2.3.5 (Non-compactness full semantics). It is not the case that Γ is finitely
satisfiable implies that Γ is satisfiable.

Proof. The set of sentences Γ is finitely satisfiable but not satisfiable:

Γ = {ϕn | n ∈ N} ∪ {ψ}

where ϕn expresses that there are at least n+ 1 allocated and distinct elements as
in Lemma 2.2.8, and ψ is the conjunction of the sentences of Equations (2.1) and
(2.2). Each finite subset of Γ is satisfiable: we can construct structures in the same
way as before, but now also select as interpretation for P the domain of the finite
heap used. However, Γ is not satisfiable: due to ψ we need to choose a finite heap
h and then not all ϕn can be satisfied.

Corollary 2.3.6. There is no sound, complete, finitary proof system for FSL.

44 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

The above argument of non-compactness relies on the presence of separating
implication (in the box modality), whereas in Lemma 2.2.8 we need not rely on
any separating connective. Can we also show non-compactness without relying on
separating implication?

We introduce the following abbreviation (also called the sub-heap modality):

□ϕ abbreviates ¬(⊤ ∗ ¬ϕ)

that expresses that ϕ holds for every sub-heap of the current heap. Bannister and
others have also introduced a related connective, called separating coimplication,
in [15], of which this sub-heap modality is an instance. Formally, a heap h′ is a
sub-heap of heap h, denoted h′ ⊆ h, if dom(h′) ⊆ dom(h) and h′(a) = h(a) for all
a ∈ dom(h′). We have that h ≡ h1 ⊎ h2 implies h1 ⊆ h and h2 ⊆ h. Conversely, if
h2 ⊆ h then there exists a heap h1 such that h ≡ h1 ⊎ h2.

Proposition 2.3.7. The following holds:

• A, h, ρ |=SSL □ϕ if and only if A, h′, ρ |=SSL ϕ for every finite heap h′ ⊆ h,

• A, h, ρ |=FSL □ϕ if and only if A, h′, ρ |=FSL ϕ for every heap h′ ⊆ h.

Proof. We show it for the standard semantics first.
A, h, ρ |=SSL ¬(⊤ ∗ ¬ϕ)

if and only if
A, h1, ρ |=SSL ⊥ or A, h2, ρ |=SSL ϕ for all h1, h2 such that h ≡ h1 ⊎ h2

if and only if
A, h′, ρ |=SSL ϕ for every h′ ⊆ h.
The proof for the full semantics is similar.

Since a heap is a partial function on the domain of a structure, the values that
are assigned to locations can themselves be used as locations. Intuitively, if (x ↪→ y)
and (y ↪→ z) are satisfied, we may think of traversing the pointer at location x
to obtain the value y, which is used as a location and can be traversed to obtain
the value z. Such traversal is denoted by (x ↪→ y ↪→ z). In general, we can form a
chain of traversals

(x0 ↪→ x1 ↪→ . . . ↪→ xn)

which means (xi ↪→ xi+1) for every 0 ≤ i < n. We traverse n locations to end up
with the value xn. We say one can reach value xn by traversing n locations. A
heap with cycles allows the same location to be revisited in a traversal:

x0 ↪→ . . . ↪→ xn ↪→ x0

where we end up back at the starting location x0 and we can infinitely continue
traversing along the same locations of the chain. Although the cycle comprises
finitely many locations, the chain can be extended infinitely long.

A dead-end is a location that is not allocated: we are unable to continue
the traversal through that location. Formally, x is a dead-end if ∀y(x ↪̸→ y) (or,
equivalently, (x ↪̸→ −)). If a location is not a dead-end, we may progress our

2.3. FULL SEMANTICS 45

traversal from that location. Conversely, an unreachable value (in the sense that it
is unreachable from the heap) is a value which is not pointed to by any location
allocated on the heap. Formally, x is unreachable if ∀y(y ↪̸→ x). A value is reachable
(from the heap) if it is not unreachable, so there exists a location which points to
that value. One can think of the set of all values that are reachable from the heap
as comprising the contents of the heap. Thus, a value unreachable from some heap
is a value that is not contained in that heap.

In both the standard semantics and the full semantics, there is a heap in which
every location is a dead-end: the empty heap. The empty heap has no contents. In
the full semantics, we can also have heaps in which all values of the domain of the
structure are reachable. Then the contents of the heap is the same as the domain
of the structure. This is not possible in the standard semantics for structures with
an infinite domain.

A heap h is well-founded if for every non-empty sub-heap h′ ⊆ h there is a
value not contained in h′. Alternatively, a heap h is well-founded if there exists
no infinite sequence of locations a0, a1, . . . such that h(an+1) = an. There are
non-well-founded heaps, for example, a heap which has a cycle.

With the sub modality we can express the heap is well-founded, by the sentence

□(emp ∨ ∃x((x ↪→ −) ∧ ∀y((y ↪→ −) → (y ↪̸→ x)))). (2.3)

Lemma 2.3.8 (Non-compactness full semantics). It is not the case that Γ is finitely
satisfiable implies Γ is satisfiable for theories Γ in which the separating implication
connective does not occur.

Proof. Let c0, c1, . . . be countably many individual constant symbols (these can be
encoded using unary predicate symbols with the appropriate property of existence
and uniqueness). The set of sentences Γ is finitely satisfiable but not satisfiable:

Γ = {cn+1 ↪→ cn | n ≥ 0} ∪ {ψ}

where ψ is Equation (2.3). Every finite subset of Γ is satisfiable: take as domain of
our structure N, interpret the individual constants c0, . . . by unique naturals, and
construct a finite heap that satisfies the (finitely many) points-to constraints. For
every sub-heap of the constructed finite heap there exists a value not contained in
it, so ψ is also satisfied. However, Γ is not satisfiable, as that would imply there is
an infinite sequence of locations a0, a1, . . . such that h(an+1) = an.

Note that we did not need to add to Γ any sentence expressing that ci ̸= cj for
i ≠ j, since this possibility is already ruled out by ψ: if ci = cj for some i ̸= j then
there is a cycle in the heap and thus is the heap non-well-founded.

Corollary 2.3.9. There is no sound, complete, finitary proof system restricted to
formulas without separating implication for FSL.

The diamond and sub modality together can be used to express that the domain
of the structure is countably infinite. The main idea is that we can express that
there is a smallest heap that has the same structure as the natural numbers,

46 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

and that every element of the domain is reachable in that heap. For notational
convenience, we introduce the following abbreviations: let zero abbreviate the
sentence

∃x((x ↪→ −) ∧ ∀y(y ↪̸→ x))

which expresses that there is some unreachable value in the domain of the heap,
and let nat abbreviate the sentence

tot(↪→) ∧ inj (↪→) ∧ zero.

If A, h |=FSL nat then h encodes some copy of the natural numbers. We can
then define f : N → A inductively by f(0) = a0, where

A, h, ρ[x := a0] |=FSL ∀y((x ↪→ −) ∧ y ↪̸→ x))

for some valuation ρ (i.e. a0 is some ‘minimal’ element of h), and f(n+ 1) = a′,
where h(f(n)) = a′. The latter is defined on f(n) because of tot(↪→), since
A, h |=FSL ∀x∃y(x ↪→ y) means that the domain of h equals D. Note that the
encoding is not necessarily unique: there could be multiple ‘minimal’ elements.

Next, let ind we denote the formula

(zero ∧ (∀x, y. (x ↪→ y) → (y ↪→ −))) → ∀x(x ↪→ −)

which expresses that the domain of the heap and the structure coincide, if there
is some unreachable value in the domain of the heap and every reachable value is
also in the domain of the heap. The formula ♦(nat ∧□ind) then characterizes the
class of countably infinite structures.

Proposition 2.3.10. A |=FSL ♦(nat ∧□ind) if and only if the domain of A is
countably infinite.

Proof. Let A |=FSL ♦(nat ∧□ind). From Corollary 2.3.3, there exists a heap h′

such that A, h′ |=FSL nat ∧□ind . From the definition of nat , as explained above, it
follows that h′ contains a copy of the natural numbers. From Proposition 2.3.7 and
that �ind is satisfied, it follows that the sub-heap h′′ of h′ satisfies ind . Now choose
a particular sub-heap h′′0 of h′ which contains precisely the copy of the natural
numbers, and nothing else. Thus h′′0 satisfies zero ∧ ∀x, y((x ↪→ y) → (y ↪→ −)),
and so we obtain that A, h′′0 |=FSL ∀x(x ↪→ −), that is, the domain of h′′0 (which is
N) equals the domain of A.

Conversely, let A be countably infinite. For any enumeration of the domain of
A, we can construct a corresponding heap h which encodes this enumeration and
thus satisfies A, h |=FSL nat ∧□ind .

Corollary 2.3.11. A |=FSL ¬fin ∧■(nat → ¬□ind) if and only if the domain of
A is uncountably infinite.

Thus, we are able to distinguish whether a structure is countably infinite or not.
Consequently, full separation logic cannot satisfy the Löwenheim-Skolem theorem.

2.4. EMBEDDINGS 47

2.4 Embeddings
In the previous sections we defined the standard semantics and full semantics for
separation logic. But what is the precise relation between the validity |=FSL ϕ
and |=SSL ϕ for formulas ϕ of separation logic? It seems possible to embed the
valid sentences of standard separation logic in full separation logic, if there is a
formula finh that expresses the finiteness of the domain of the (current) heap in
full separation logic. Consider the following translation T (ϕ) defined by induction
on the separation logic formula ϕ:

• T (⊥) = ⊥,

• T (x
.
= y) = (x

.
= y),

• T (x ↪→ y) = (x ↪→ y),

• T (C(x1, . . . , xn)) = C(x1, . . . , xn),

• T (ϕ→ ψ) = T (ϕ) → T (ψ),

• T (∀xϕ) = ∀x(T (ϕ)),

• T (ϕ ∗ ψ) = T (ϕ) ∗ T (ψ),

• T (ϕ −∗ ψ) = (finh ∧ T (ϕ)) −∗ T (ψ).

Proposition 2.4.1. A, h, ρ |=SSL ϕ if and only if A, h, ρ |=FSL finh ∧ T (ϕ).

Proof. Note that h necessarily is a finite heap. A finite heap can only be split into
finite subheaps. In the translation of separating implication we ensure that in the
full semantics we only quantify over finite heaps.

Recall that we have already seen a sufficient condition for finiteness of the
domain of the heap, the conjunction of Equations (2.1) and (2.2). However, that
condition only works at the top-level and makes use of an additional predicate
symbol added to the signature that can only be given an interpretation a priori,
and not depending on the current interpretation of the heap as modified by the
separating connectives. However, we still lack a necessary condition and thus have
the following open problem:

Problem 2.1. Is there a sentence in separation logic finh such that A, h |=FSL finh
if and only if dom(h) is finite?

Next, we then turn our attention to the relation between separation logic and
classical logic. Firstly, we embed a subset of separation logic, called separation
logic light, into first-order logic. We argue that the resulting embedding preserves
semantics, but does not give us a compact semantic consequence relation. Secondly,
we show that it is possible to translate a formula of separation logic into a formula
of second-order logic that preserves its semantics.

In the previous section, we have seen there is no sound, complete, finitary
proof system for full separation logic, even when we restrict to formulas without

48 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

separating implication. Was the problem of non-compactness caused by the fact
that, in the modality □ϕ, that is defined as ¬(⊤ ∗ ¬ϕ), we use negation outside of
separating conjunction? We now study a restricted set of separation logic formulas,
in which we restrict the occurrences of the separating conjunction. Are we able
to show compactness whenever we disallow using separating conjunction under
negation?

Recall that in a pure formula of separation logic we do not have any occurrences
of points-to, separating conjunction, or separating implication. We now consider
semi-pure formulas: in a semi-pure formulas there are no occurrences of separating
conjunction or separating implication, but we are allowed to use points-to. We
then define a restricted set of formulas of separation logic, called the formulas of
separating logic light (SLL), as follows:

• a semi-pure formula of separation logic is a formula of separation logic light,

• (ϕ ∗ ψ) is a formula of separation logic light given that ϕ and ψ are formulas
of separation logic light.

We thus restrict the use of separating conjunction to the ‘top level’ of the formula.
For the purposes of our exposition, we use only the classical connectives of con-
junction, disjunction and negation: in this case, implication (ϕ→ ψ) is interpreted
as material implication (¬ϕ ∨ ψ). Note that the use of negation in a semi-pure
formula can be pushed to the leaves of the formula, by the classical equivalences:

• ¬(∀xϕ) reduces to ∃x(¬ϕ),

• ¬(∃xϕ) reduces to ∀x(¬ϕ),

• ¬(ϕ ∧ ψ) reduces to (¬ϕ) ∨ (¬ψ),

• ¬(ϕ ∨ ψ) reduces to (¬ϕ) ∧ (¬ψ).

In fact, any semi-pure formula can first be normalized into prenex normal form,
and then the negation in the quantifier-free part can be pushed to the leaves. Such
formulas of separation logic light are said to be in normal form.

We now consider whether satisfiability of separation logic light formulas is
compact, that is, whether a theory of separation logic light is satisfiable if and only
if that theory is finitely satisfiable.

Proposition 2.4.2. Given a set Γ of separation logic light formulas. There exists
a structure A and heap h such that A, h |=FSL Γ, if and only if, for every finite
subset Γ0 ⊆ Γ there exists a structure A and heap h such that A, h |=FSL Γ0.

Proof. We introduce the following first-order translation ϕ@R of separation logic
light formulas in normal form, where R is a binary relation symbol of the signature
(so necessarily different from ↪→):

• (x
.
= y)@R = (x

.
= y),

• (x ↪→ y)@R = R(x, y),

2.4. EMBEDDINGS 49

• C(x1, . . . , xn)@R = C(x1, . . . , xn),

• (¬ϕ)@R = ¬(ϕ@R),

• (ϕ ∧ ψ)@R = ϕ@R ∧ ψ@R and (ϕ ∨ ψ)@R = ϕ@R ∨ ψ@R,

• (∀xϕ)@R = ∀x(ϕ@R) and (∃xϕ)@R = ∃x(ϕ@R),

• (ϕ ∗ ψ)@R = R ≡ R1 ⊎R2 ∧ ϕ@R1 ∧ ψ@R2,

where by R ≡ R1 ⊎R2 we denote the formula

∀x, y. (R(x, y) ↔ R1(x, y) ∨R2(x, y)) ∧ ¬(R1(x, y) ∧R2(x, y))

that expresses that R is the union of R1 and R1 and that R1 and R2 are disjoint.
The binary relation symbols R, R1 and R2 are ‘fresh’. It is sufficient to show that
ϕ is satisfiable (in full separation logic) if and only if fun(R) ∧ ϕ@R is satisfiable
(in classical logic). More precisely, A, h, ρ |=FSL ϕ for some A, h, ρ if and only
B, ρ′ |=CL fun(R) ∧ ϕ@R for some B, ρ′. Note that the interpretation of R is the
graph of the heap h.

Consequently, compactness of first-order logic implies compactness of separation
logic light. Let Γ be an infinite set of formulas of SLL and construct a corresponding
set Γ′ = {fun(R) ∧ ϕ@R | ϕ ∈ Γ} for some fixed binary relation symbol R. Note
that Γ′ may require the introduction of a countably infinite number of fresh binary
relation symbols. This is however no problem because first-order logic allows for
the addition of a countably infinite set of relation symbols to the signature without
affecting satisfiability. Now, given that every finite subset of Γ is satisfiable, so
is every finite subset of Γ′. By the compactness of first-order logic, we then have
that Γ′ is also satisfiable. From the structure witnessing satisfiability of Γ′ we can
show the satisfiability of Γ in full separation logic. Conversely, assume that Γ is
satisfiable in full separation logic, then we can use the same structure as witness
for the satisfiability of every finite subset of Γ.

A similar result can be obtained for standard separation logic.
Although we are able to show compactness of the satisfiability relation, we have

not yet reached the conclusion that the semantics can be useful for an adequate
proof theory. This is because compactness of the satisfiability relation does not
imply that the semantic consequence relation is compact. Non-compactness of
the consequence relation for separation logic light follows directly from the above
argument involving well-founded relations.

Lemma 2.4.3. Given a set Γ of separation logic light formulas, and a formula
ϕ of separation logic light. There is a counter-example to the claim: Γ |=FSL ϕ
implies there exists a finite subset Γ0 ⊆ Γ such that Γ0 |=FSL ϕ.

Proof. Let Γ denote the set of separation logic light formulas

{(cn+1 ↪→ cn) | n ≥ 0}

50 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

where c0, c1, . . . are individual constant symbols (these can be again encoded). It
follows that

Γ |=FSL ⊤ ∗ (¬emp ∧ ∀x((x ↪→ −) → ∃y(y ↪→ x))),

where also the latter is a separation logic light formula. The formula expresses that
there exists some non-empty sub-heap, in which every location in the domain is
reachable. Clearly, this is the case if we have a cycle in the heap. However, this is
also the case when we have an infinite chain in the heap. But, importantly, there
does not exist a finite subset Γ0 of Γ such that

Γ0 |=FSL ⊤ ∗ (¬emp ∧ ∀x((x ↪→ −) → ∃y(y ↪→ x))).

As soon as we restrict ourselves to a finite subset Γ0 of Γ, we know we only have
to interpret finitely many values for ci. In that case, we no longer necessarily have
a non-empty subheap in which every location in the domain is reachable.

This failure of compactness of the semantic consequence relation is important
for the design of a finitary proof system (see also Theorem A.4.3): it is not possible
to have a sound and complete, finitary proof system for FSL even when we restrict
to the formulas of separation logic light.

We now turn to the relation between separation logic and second-order classical
logic. In particular, we focus on dyadic second-order logic, where we restrict second-
order quantification to variables of arity 2. It is possible to embed separation
logic in dyadic second-order logic, meaning that second-order logic is at least as
expressive as separation logic.

Given a first-order signature Σ. We define the following translation of formulas of
separation logic into formulas of second-order logic. The translation is parameterized
by a higher-order variable of arity 2, which intuitively takes the place of the points-
to construct. This translation makes obvious how separating conjunction and
separating implication can be read as particular second-order quantifications.

Definition 2.4.4. Let R,R1, R2, R
′, R′′ be variables of arity 2. The function

[−](R) translates formulas of separation logic to formulas of dyadic second-order
logic, and is defined inductively as follows:

• [⊥](R) = ⊥,

• [x
.
= y](R) = (x

.
= y),

• [x ↪→ y](R) = R(x, y),

• [C(x1, . . . , xn)](R) = C(x1, . . . , xn),

• [ϕ→ ψ](R) = [ϕ](R) → [ψ](R),

• [∀xϕ](R) = ∀x([ϕ](R)),

• [ϕ ∗ ψ](R) = ∃R1∃R2(R ≡ R1 ⊎R2 ∧ [ϕ](R1) ∧ [ψ](R2)),

2.5. RELATIONAL SEPARATION LOGIC 51

• [ϕ −∗ ψ](R) = ∀R′′∀R′(fun(R′′) ∧R′′ ≡ R′ ⊎R→ [ϕ](R′) → [ψ](R′′)),

where R ≡ R1 ⊎R2 denotes the formula

∀x, y. (R(x, y) ↔ R1(x, y) ∨R2(x, y)) ∧ ¬(R1(x, y) ∧R2(x, y))

where R1 and R2 are variables of arity 2.

Note that, in second-order logic, we have the following properties:

• fun(R) ∧R ≡ R1 ⊎R2 → fun(R1) ∧ fun(R2),

• fun(R) ∧ fun(R′′) ∧R′′ ≡ R′ ⊎R→ fun(R′),

hence we need not explicitly mention that all quantified variables are functional.

Proposition 2.4.5. Given structure A = (A, I) and formula ϕ of separation logic.
We have that A |=FSL ϕ if and only if A |=CL ∀R(fun(R) → [ϕ](R)).

Proof. By unfolding the semantics of separation logic, and induction on the struc-
ture of the formula ϕ, where the parameter R represents the current heap in the
semantics of separation logic.

2.5 Relational separation logic
We now ask ourselves the question: is separation logic also at least as expressive as
dyadic second-order logic? Although this question is still open for full separation
logic at the point of this writing, we can formulate a sufficient condition for having
that separation logic is at least as expressive as dyadic second-order logic. That
condition is the expressivity of the binding operator which captures the current
interpretation of the heap in a second-order variable. However, before we are able
to introduce the binding operator, we need to discuss two differences between
separation logic and dyadic second-order logic.

The first difference between separation logic and dyadic second-order logic
is that in our presentation, separation logic speaks about heaps as being partial
functions whereas in dyadic second-order logic the second-order variables denote
binary relations. We could thus generalize the semantics of separation logic, and
remove the restriction to partial functions at the semantic level; instead consider a
separation logic of binary relations called relational separation logic. In relational
separation logic, we treat the primitive points-to (x ↪→ y) as a binary relation that
is not necessarily functional, in contrast to the semantics of separation logic as
presented in the previous chapter.

Let A be a set (say, the domain of a structure). A relation R is a subset of the
Cartesian product A×A, that is, R ⊆ A×A. This is in contrast to heaps, which
are partial functions from A to A. Every heap can be seen as a relation, where
we take the graph of the partial function. We introduce the following notions on
relations. The domain of a relation dom(R) is the set {a | (a, a′) ∈ R for some a′}.
By R ⊥ R′ we denote that the domains of the relations R and R′ are disjoint. A

52 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

relation R is functional if for every element a ∈ dom(R) there is a unique a′ such
that (a, a′) ∈ R. If R and R′ are functional, R∩R′ = ∅ if and only if R ⊥ R′.

Similar to our previous discussion regarding the semantics of standard and
full separation logic, we can introduce the following relational separation logic
semantics:

• WRSL is weak relational separation logic where second-order quantification
of the separating connectives ranges over all finite binary relations,

• FRSL is full relational separation logic where second-order quantification of
the separating connectives ranges over all binary relations.

We can now give the definitions of weak relational separation logic, WRSL,
and full relational separation logic, FRSL. Only the definition for FRSL is shown
in full below, that of WRSL is easily obtained by restricting to finite relations.

Definition 2.5.1 (Satisfaction relation). Given a structure A = (A, I), a valuation
ρ of A, a finite binary relation R ⊆ A×A, and a separation logic formula ϕ. The
satisfaction relation A,R, ρ |=WRSL ϕ is defined inductively on ϕ:

• . . .

• A,R, ρ |=WRSL ϕ ∗ ψ iff A,R1, ρ |=WRSL ϕ and A,R2, ρ |=WRSL ψ for some
finite R1,R2 ⊆ A×A such that R = R1 ∪R2 and R1 ⊥ R2,

• A,R, ρ |=WRSL ϕ −∗ ψ iff A,R′, ρ |=WRSL ϕ implies A,R∪R′, ρ |=WRSL ψ
for every finite R′ ⊆ A×A such that R ⊥ R′.

Definition 2.5.2 (Satisfaction relation). Given a structure A = (A, I), a valuation
ρ of A, a binary relation R ⊆ A × A, and a separation logic formula ϕ. The
satisfaction relation A,R, ρ |=FRSL ϕ is defined inductively on the structure of ϕ:

• A,R, ρ |=FRSL ⊥ never holds,

• A,R, ρ |=FRSL (x
.
= y) iff ρ(x) = ρ(y),

• A,R, ρ |=FRSL (x ↪→ y) iff (ρ(x), ρ(y)) ∈ R,

• A,R, ρ |=FRSL C(x1, . . . , xn) iff (ρ(x1), . . . , ρ(xn)) ∈ CI ,

• A,R, ρ |=FRSL ϕ→ ψ iff A,R, ρ |=FRSL ϕ implies A,R, ρ |=FRSL ψ,

• A,R, ρ |=FRSL ∀xϕ iff A,R, ρ[x := a] |=FRSL ϕ for every a ∈ A,

• A,R, ρ |=FRSL ϕ ∗ ψ iff A,R1, ρ |=FRSL ϕ and A,R2, ρ |=FRSL ψ for some
R1,R2 ⊆ A×A such that R = R1 ∪R2 and R1 ⊥ R2,

• A,R, ρ |=FRSL ϕ −∗ ψ iff A,R′, ρ |=FRSL ϕ implies A,R∪R′, ρ |=FRSL ψ for
every R′ ⊆ A×A such that R ⊥ R′.

2.5. RELATIONAL SEPARATION LOGIC 53

Note that in the semantics of the separating connectives we require disjointedness
of the domains of the relations, not the disjointedness of the relations themselves.
This design choice is discussed in more detail later. In the definition of WRSL,
it is not strictly necessary to require that R1 and R2 are finite, since this follows
from the fact that their union must be finite too.

We can embed (functional) separation logic in relational separation logic as
follows (we here only sketch the main ideas, and leave out the technical details).
Let ϕ be a formula of separation logic. We then define the translation T (ϕ) by
induction on the separation logic formula ϕ:

• T (⊥) = ⊥,

• T (x
.
= y) = (x

.
= y),

• T (x ↪→ y) = (x ↪→ y),

• T (C(x1, . . . , xn)) = C(x1, . . . , xn),

• T (ϕ→ ψ) = T (ϕ) → T (ψ),

• T (∀xϕ) = ∀x(T (ϕ)),

• T (ϕ ∗ ψ) = T (ϕ) ∗ T (ψ),

• T (ϕ −∗ ψ) = (fun(↪→) ∧ T (ϕ)) −∗ T (ψ).

We have that this translation preserves the semantics of full separation logic:

A, h, ρ |=FSL ϕ if and only if A, h, ρ |=FSL T (ϕ)

because fun(↪→) already holds with respect to an interpretation based on heaps.

Proposition 2.5.3.

A, h, ρ |=FSL ϕ if and only if A,Graph(h), ρ |=FRSL T (ϕ).

Conversely, if we also want to embed relational separation logic in (functional)
separation logic, we need to encode binary relations in heaps by the introduction of
multiple sorts and a binary relation representing elementhood : one sort corresponds
to the elements, and another sort corresponds to non-empty sets of elements, and
the binary relation is interpreted to represent the elements of non-empty sets
of elements. In relational separation logic a location can be related to zero or
more values. In our two-sorted separation logic we restrict locations to the sort of
elements and values to the sort of non-empty sets of elements: then a heap either
leaves a location not allocated or it is allocated and is assigned to a set consisting
of one or more elements. The translation T ′ maps every connective in an identical
manner, but only needs to reinterpret the points-to primitive:

T ′(x ↪→ y) = ∃S((x ↪→ S) ∧ (y ∈ S))

54 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

where S is of the non-empty set sort, and (y ∈ S) indicates that value y is a
member of the set S.

To make it possible to embed relational separation logic in separation logic in
this straightforward manner forms the technical motivation for the disjointedness of
the domains of relations in the semantics of the separating connectives of relational
separation logic. Note that it is also possible to embed one-sorted separation logic
into this two-sorted separation logic, where a heap that maps a location to a single
value is represented by mapping that same location to the singleton set consisting
of the sole value.

The second difference between separation logic and second-order logic is, intu-
itively, the local perspective of separation logic, which is determined by the ‘current’
heap. Separation logic has a restricted form of quantification over heaps by the
modalities introduced earlier:

• ■ϕ holds in a heap h if ϕ holds in every heap regardless of h,

• ♦ϕ holds in a heap h if ϕ holds in some heap regardless of h.

In dyadic second-order logic one can also quantify over binary variables (variables
of arity 2), but multiple different such variables can be in scope. In contrast, in the
semantics of separation logic we consider formulas with respect to a single heap.

To illustrate how subtle this difference is, we extend the syntax of separation
logic with the binding operator (↓Rϕ) which binds the binary second-order variable
R in the evaluation of ϕ to the current interpretation of the points-to relation.
The binding operator acts in a similar way as a quantifier: R is bound in ϕ in the
formula (↓Rϕ). For this extension, we need to extend the language of separation
logic, in the sense that it is allowed to apply binary variables to individual variables
to form primitive formulas, as in second-order logic. Note that this extension of
the language still lacks quantification over second-order variables. Further, we need
to adapt the semantics of relational separation logic, which we call FRSL↓, since
now valuations include assignments of relations to binary second-order variables.

We then give the following semantics to the binding operator:

• A,R, ρ |=FRSL↓ (↓Rϕ) if and only if A,R, ρ[R := R] |=FRSL↓ ϕ.

Consider, for example, that for formulas of the form (↓R(ϕ −∗ ψ)) in the place of
the subformulas ϕ and ψ we can still refer to the (outer) heap. Specifically, in the
place of ψ we can express the locations that are in the extended part of the heap:
(x ↪→ −) ∧ ¬∃yR(x, y) holds for those locations x in the domain of the heap with
which ϕ was evaluated, but were not allocated in the outer heap.

Alternatively, if we would translate this extended language to dyadic second
order logic (as in Definition 2.4.4), we would let the binding operator correspond
to bounded (second-order) quantification

[↓Rϕ](R′) = ∃R((R ≡ ↪→) ∧ [ϕ](R′)),

where R and R′ are different variables, and (R ≡ ↪→) abbreviates the first-order
formula ∀x, y(R(x, y) ↔ (x ↪→ y)) that ensures the valuation of R coincides with

2.5. RELATIONAL SEPARATION LOGIC 55

the current interpretation of the relation. Here we see why introducing relational
separation logic is useful, since in dyadic second-order logic binary variables range
over arbitrary relations. Note that, just like quantifiers, it is possible to perform
variable renaming of the bound variable R in case it clashes with the chosen variable
R′ used for translation, but we leave these technical details to the reader.

The expressive power of this binding operator lies in that it allows to ‘break
the spell’ of the local perspective since the bound second-order variable allows, in
the local context of the current interpretation of the points-to relation, to refer to
the ‘outer’ interpretations that have generated it (by the separating connectives).

This extension of separation logic consequently allows for a simple, compositional
translation of dyadic second-order logic. For notational convenience, let (∀Rϕ)
denote the (extended) separation logic formula ■(↓Rϕ). Now we have that

A,R, ρ |=FRSL↓ ∀Rϕ

if and only if
A,R, ρ[R := R′] |=FRSL↓ ϕ,

for every relation R′. To translate every dyadic second-order formula into a
corresponding formula of separation logic, we first translate it into separation logic
(extended with a binding operator). Let ϕ be a dyadic second-order formula (which
is assumed not to contain occurrences of the points-to relation of separation logic).
We then define T (ϕ) by induction on the structure of the dyadic second-order
formula ϕ:

• T (⊥) = ⊥,

• T (R(x1, x2)) = R(x1, x2),

• T (C(x1, . . . , xn)) = C(x1, . . . , xn),

• T (ϕ→ ψ) = T (ϕ) → T (ψ),

• T (∀x(ϕ)) = ∀xT (ϕ),

• T (∀R(ϕ)) = ∀R(T (ϕ)).

Note that in the last clause we use our abbreviation introduced above. It now
follows that A, ρ |=CL ϕ if and only if A,R, ρ |=FRSL↓ T (ϕ) for an arbitrary binary
relation R. Note that T (ϕ) does not depend on the interpretation of the points-to
relation. The resulting formula T (ϕ) is interpreted with respect to relational
separation logic, but that can again be embedded in full (functional) separation
logic by the introduction of the two sorts as mentioned above.

We end our analysis by stating two open problems:

Problem 2.2. Is the binding operator (↓Rϕ) definable by a standard formula of
separation logic in the semantics FRSL↓?

Problem 2.3. Are FRSL and FRSL↓ equally expressive?

56 CHAPTER 2. MODEL THEORY OF SEPARATION LOGIC

If the answers to both questions are affirmative, then it is possible to express the
binding operator in FRSL too. We conjecture that this is not possible: in the first
problem we have in the extended language and semantics FRSL↓ additional second-
order variables, whereas in FRSL we only have first-order variables available. In
the second problem, the binder breaks the ‘local perspective’ of separation logic. It
may be possible, however, to express the binding operator relative to a sufficiently
rich structure that allows encoding heaps as objects in the domain of the underlying
structure, but the details remain to be worked out.

Bibliographic note
Remarkably, [35] presents a rather intricate encoding of (dyadic) weak second-
order logic into standard separation logic. Apparently this restriction to finite
heaps allows to break the local perspective. Our conjecture, however, is that full
separation logic is strictly less expressive than (dyadic) second-order logic.

Chapter 3

Proof theory of separation logic

Our goal is to obtain a sound and complete, finitary proof system for reasoning
about the valid formulas of separation logic. To that end we introduce two calculi
consisting of separation logic formulas and rooted assertions, which are separation
logic formulas that are annotated with a representation of the heap with respect
to which the separation logic formula is evaluated. We shall argue that the
obtained finitary proof systems are sound and complete with respect to different
interpretations. However, before jumping to the conclusion, we first need to explain
the development of this result.

As seen in the previous chapter, the semantics WSL and FSL can not be
adequately used as interpretations, due to their failure of compactness (of the
satisfaction relation or the semantic consequence relation). The main model-
theoretic results are that WSL is already non-compact even for the pure formulas,
and in the setting of FSL we can express: (1) finiteness of structures, (2) well-
foundedness of the points-to relation, and (3) existence of countably infinite and
uncountable structures. As a consequence we have that FSL satisfies neither
compactness nor the downward and upward Löwenheim-Skolem theorems. In fact,
we have seen that the well-foundedness of the points-to relation can already be
expressed in FSL using only separating conjunction. Consequently, FSL without
separating implication is already non-compact. For FSL without separating
implication but in which separating conjunction only occurs positively, the fragment
which we called separation logic light (SLL), we do have compactness, but its
semantic consequence relation is not compact. Non-compactness (of the satisfaction
relation or the semantic consequence relation) implies that there does not exist a
finitary, sound and complete proof system with respect to these interpretations.

Recall that in Section 2.4 we have seen that it is possible to embed full separation
logic in dyadic second-order classical logic, and in Section 2.5 we have seen an
investigation of the converse: can dyadic second-order logic be embedded in full
separation logic too? This is a good starting point in light of the above goal,
since if separation logic is equally expressive as second-order logic we could simply
use Henkin’s semantics of second-order logic directly. However, this question is

57

58 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

still open, and we conjecture that the binding operator cannot be expressed in
separation logic due to its inherent local perspective.

The question thus arises whether there exists an alternative interpretation of
separation logic that does allow for a finitary, sound and complete proof system.
Clearly, the main complexity of separation logic stems from the (second-order)
quantification over heaps (or sub-heaps, in the case of the separating conjunction).
For second-order logic a sound and complete axiomatization can be obtained by
generalizing its semantics by means of so-called general structures. Such structures
extend first-order structures with a set of possible interpretations of the second-
order variables. For example, instead of interpreting a second-order variable of
arity 1 as ranging over all possible subsets of the given first-order domain, a
general structure restricts its interpretation to a given set of such subsets. The
standard structures of second-order logic are thus a particular instance of general
structure. This generalization of the semantics of second-order logic allows for a
sound and complete axiomatization by restricting to Henkin structures [108]. A
Henkin structure is a general structure for second-order logic which additionally
satisfies the comprehension axiom scheme

∃Rn∀x1, . . . , xn(Rn(x1, . . . , xn) ↔ ϕ(x1, . . . , xn))

for any second-order formula ϕ(x1, . . . , xn) which does not contain the n-ary variable
R. In the arithmetic comprehension axiom ϕ(x1, . . . , xn) is first-order.

Generalizing the semantics of separation logic accordingly in terms of a given set
of possible heaps, which does not necessarily contain all heaps, we can formulate
in separation logic the following version of the arithmetic comprehension axiom
scheme

♦(∀x, y((x ↪→ y) ↔ ϕ(x, y)))

which expresses the existence of a heap such that its graph, as denoted by the
points-to relation ↪→, satisfies the pure first-order formula ϕ(x, y). The formula ϕ is
pure in the sense that it does not involve the separation connectives or the points-to
relation. The ♦-modality expresses the existence of a heap which satisfies the
associated formula. Such an instance of the arithmetic comprehension axiom holds
if there exists a heap which is characterized by the formula ϕ(x, y). Therefore, we
introduce a new interpretation of separation logic that restricts the (second-order)
quantification over heaps to first-order definable heaps.

For this new interpretation we introduce a sequent calculus which is sound
and complete. In this sequent calculus we introduce so-called rooted formulas
ϕ@ψ where ψ(x, y) are pure first-order formulas. In the interpretation of rooted
formulas, ψ(x, y) determines the interpretation of the heap with respect to which ϕ
is evaluated. The completeness proof is based on the construction of a model for a
deductively consistent theory (a theory from which false is not derivable), following
Henkin’s approach. From the completeness proof we further derive that this new
interpretation satisfies both compactness and the downward Löwenheim-Skolem
theorem. By the seminal theorem of Lindström [217, 210] we then infer that this
new interpretation is as expressive as first-order logic.

3.1. SEQUENT CALCULUS 59

However, we cannot generalize arithmetic comprehension to arbitrary separation
logic formulas because that leads to obvious contradictions, such as

♦(∀x, y((x ↪→ y) ↔ ¬(x ↪→ y))).

Simply requiring that the points-to relation does not occur in ϕ(x, y) does not
give more than what the arithmetic comprehension axiom above gives, because
compositions of pure first-order formulas with separating connectives are equivalent
to some pure first-order formula (this easily follows from the semantics of separation
logic). To overcome this issue, we extend our rooted formulas ϕ@ψ without any
restrictions on ψ, where @ can now be understood as a special let binding connective.
We need a new interpretation of separation logic, which no longer can be captured
by a syntactic comprehension axiom scheme, and instead we consider a class of
general structures which satisfy a closure condition called semantic comprehension.

For this new, second interpretation of separation logic we introduce a natural
deduction calculus which is also sound and complete. We show completeness by
constructing models for deductively consistent theories, in a similar way as for our
sequent calculus.

3.1 Sequent calculus
In full relational separation logic we have that the following formulas are valid:

♦(∀x, y((x ↪→ y) ↔ ϕ(x, y)))

where ϕ is a pure, first-order formula. The above class of formulas, called the
arithmetic comprehension axiom scheme, expresses, for each pure first-order formula
ϕ(x, y), the existence of a relation such that its graph, as denoted by the points-to
relation ↪→, satisfies ϕ(x, y). In this section, we shall consider a restriction of full
relational separation logic in which we consider only those relations which have a
corresponding first-order description. These relations are called first-order definable.
This means that we restrict our attention to the interpretation of the separating
connectives to such first-order definable binary relations.

Let ϕ denote a first-order formula which does not contain occurrences of the
points-to relation ↪→ of separation logic. We have the standard inductive truth
definition A, ρ |=CL ϕ for first-order formulas ϕ. By ϕ(x1, . . . , xn) we denote that
the free (first-order) variables of ϕ are among the distinct variables x1, . . . , xn. A
formula ϕ(x, y) is called a binary formula. For notational convenience we assume
that the variables x and y of any binary formula are fixed and do not occur in any
separation logic formula. A binary formula is also simply denoted by ϕ, omitting
its free variables x and y. Given a structure A = (A, I) and a first-order formula
ϕ(x, y), we denote by RelA(ϕ) the relation {⟨ρ(x), ρ(y)⟩ | A, ρ |=CL ϕ} ⊆ A × A.
Note that the evaluation of ϕ(x, y) only depends on the values of its free variables
x and y, that is, A, ρ |=CL ϕ if and only if A, ρ′ |=CL ϕ, where ρ(x) = ρ′(x) and
ρ(y) = ρ′(y). By ϕ(t, t′) we denote the result of replacing in ϕ(x, y) the variables
x and y by terms t and t′, respectively (if necessary renaming bound variables to
ensure that the variables of t and t′ do not become bound).

60 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

Definition 3.1.1 (First-order definability). For a given structure A = (A, I), the
relation R ⊆ A×A is first-order definable if R = RelA(ϕ), for some binary formula
ϕ(x, y).

Note that, given a structure A = (A, I), we have I(R) = RelA(R), that is,
for any binary relation symbol R its interpretation I(R) is trivially a first-order
definable relation. We introduce the abbreviation ϕ = ϕ1⊎ϕ2 that denotes that the
binary formulas ϕ1(x, y) and ϕ2(x, y) represent a partition of the binary formula
ϕ(x, y) which is expressed by the conjunction of the three formulas

∀x, y(ϕ(x, y) ↔ (ϕ1(x, y) ∨ ϕ2(x, y))),

∀x, y, z(ϕ1(x, y) → ¬ϕ2(x, z)),

∀x, y, z(ϕ2(x, y) → ¬ϕ1(x, z)).

The latter two formulas, which state that the domains of the binary relations
represented by ϕ1(x, y) and ϕ1(x, y) are disjoint, we abbreviate by ϕ1 ⊥ ϕ2. A
similar abbreviation can be given for binary relation symbols R = R1 ⊎ R2. By
usual abuse of notation, we mean that the equality holds for the extension of R (so
we need to universally quantify two variables x, y and apply them to R,R1, R2).

In this section, to avoid confusion between formulas of separation logic and
formulas of first-order logic, we shall denote the former by p, q and the later by ϕ, ψ.
We introduce the semantics A,R, s |=FORSL p which is a restriction of the general
relational semantics of separation logic (see also Definition 3.4.2) such that instead
of quantifying over arbitrary binary relations, the separating connectives involve
quantification over first-order definable binary relations. It is worthwhile to observe
here that, as for Henkin models of second-order logic, the implicit second-order
quantification depends on the underlying signature of function and relation symbols.
Extending or restricting the signature affects the semantics of formulas of the ‘old’
signature.

To reason about the implicit quantification over definable (binary) relations,
we introduce rooted assertions of the form p@ϕ, where ϕ denotes a binary formula
and p is a formula of separation logic. We define A, ρ |=FORSL p@ϕ if and only if
A,R, ρ |=FORSL p, where R = RelA(ϕ). The variables x and y of the binary formula
ϕ(x, y) are thus implicitly bound by the @-connective, that is, A, ρ |=FORSL p@ϕ
if and only if A, ρ′ |=FORSL p@ϕ, for any ρ and ρ′ such that ρ(z) = ρ′(z), for any
free variable occurring in p.

We further assume that our signature includes a (countably) infinite set of
binary relation symbols R (needed for the selection of fresh ‘witnesses’). However,
definability of binary relation by a first-order formula should not depend on these
additional binary relation symbols. That is, these binary relation symbols are
added as ‘bookkeeping devices’. Alternatively, we could have introduced these as
(second-order) variables and extend evaluations so that ρ(R) ⊆ D×D, for any such
(second-order) variable. However, for both technical and notational convenience we
prefer to define their semantics as part of a structure.

Note that the separating connectives are interpreted in terms of relations
which are definable by first-order formulas which do not involve the points-to

3.1. SEQUENT CALCULUS 61

Separating conjunction

L∗

Γ, ϕ = R1 ⊎R2, p@R1, q@R2 ⇒ ∆

Γ, (p ∗ q)@ϕ⇒ ∆

R∗

Γ ⇒ ∆, ϕ = ϕ1 ⊎ ϕ2 Γ ⇒ ∆, p@ϕ1 Γ ⇒ ∆, q@ϕ2
Γ ⇒ ∆, (p ∗ q)@ϕ

Separating implication

L−∗

Γ ⇒ ∆, ϕ ⊥ ψ Γ ⇒ ∆, p@ψ Γ, q@(ϕ ∨ ψ) ⇒ ∆

Γ, (p −∗ q)@ϕ⇒ ∆

R−∗

Γ, R ⊥ ϕ, p@R⇒ ∆, q@(ϕ ∨R)

Γ ⇒ ∆, (p −∗ q)@ϕ

Points-to rules

Γ, p[ϕ/ ↪→] ⇒ ∆

Γ, p@ϕ⇒ ∆

Γ ⇒ p[ϕ/ ↪→],∆

Γ ⇒ p@ϕ,∆

Figure 3.1: Sequent calculus for FORSL. The binary relation symbols R1, R2

and R introduced in the rules L∗ and R−∗ are ‘fresh’. In the points-to rules p
denotes a semi-pure formula (which does not contain occurrences of the separating
connectives).

relation ↪→. This allows for the following alternative predicative1 characterization
of the semantics of the separating connectives in rooted assertions (used in both
the soundness and completeness proofs).

Lemma 3.1.2. We have

• A, ρ |=FORSL (p ∗ q)@ϕ if and only if there exist binary formulas ϕ1 and ϕ2
such that:
A, ρ |=FORSL ϕ = ϕ1 ⊎ ϕ2,
A, ρ |=FORSL p@ϕ1, and
A, ρ |=FORSL q@ϕ2.

• A, ρ |=FORSL (p −∗ q)@ϕ if and only if
A, ρ |=FORSL ψ ⊥ ϕ and A, ρ |=FORSL p@ψ implies
A, ρ |=FORSL q@(ϕ ∨ ψ), for all binary formulas ψ.

We now develop a calculus for sequents A1, . . . , An ⇒ B1, . . . , Bm, where each
Ai (given i = 1, . . . , n), and Bj (given j = 1, . . . ,m), is constructed from first-order

1For a foundational discussion concerning predicativity, see [57].

62 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

formulas and rooted assertions, which can be further composed using propositional
connectives and quantification of first-order variables. In particular, we have the
following abstract grammar:

ϕ, ψ ::= ⊥ | (x
.
= y) | C(x1, . . . , xn) | (ϕ→ ψ) | (∀xϕ)

p, q ::= ⊥ | (x
.
= y) | (x ↪→ y) | C(x1, . . . , xn) | (p ∗ q) | (p −∗ q) | (p→ q) | (∀xp)

A,B ::= ⊥ | p@ϕ | (A→ B) | (∀xA)

where in rooted formulas p@ϕ the first-order formula ϕ has at most free variables
x, y. Note that the free variables of p@ϕ are only the free variables of p, since the
@-connective binds the free variables x and y.

This calculus is an extension of standard first-order sequent calculus, where the
standard rules are applicable with respect to top-level propositional connectives
and quantifiers. Figure 3.1 shows the left and right rules for separating conjunction
and implication. These rules closely follow the translation of relational separation
logic into second-order logic, eliminating the explicit second-order quantification by
applying the standard proof rules for second-order quantification (which themselves
are straightforward generalizations of the rules for first-order quantification, instan-
tiating the second-order variables by formulas). The binary relation symbols R1, R2

and R introduced in the rules L∗ and R−∗ are ‘fresh’ binary relation symbols, that
is, they must not appear in the formulas of the conclusion of the rules.

We also have rules which allow classical reasoning under rooted assertions:
(p ◦ q)@ϕ↔ (p@ϕ) ◦ (q@ϕ), where ◦ denotes binary propositional connectives, e.g.,
conjunction, disjunction, and implication, (¬p)@ϕ ↔ ¬(p@ϕ), and (∃xp)@ϕ ↔
∃x(p@ϕ), and similarly (∀xp)@ϕ↔ ∀x(p@ϕ). Further, we have (∀x, y(ϕ↔ ψ)) →
(p@ϕ↔ p@ψ). It is straightforward to validate these rules, but we omit the details
of the semantics A, ρ |=FORSL A, which follows the standard Tarski-style classical
semantics, given the semantics of rooted assertions which may appear in the place
of atomic formulas.

In the so-called ‘points-to’ rules of Figure 3.1 the formula p does not involve
occurrences of the separating connectives. Such a formula of separation logic we
call semi-pure. Note that it differs from pure first-order formulas in that semi-pure
formulas additionally may involve the points-to relation. For such formulas we
denote by p[ϕ/ ↪→], for any binary formula ϕ(x, y), the result of replacing every
atomic assertion (t ↪→ t′) in p by ϕ(t, t′), which is a pure first-order formula. It
follows that A, ρ |=FORSL p[ϕ/ ↪→] if and only if A,RelA(ϕ), ρ |=FORSL p, for any
semi-pure formula p.

We now see a number of example proofs, in which we use the sequent calculus
defined above.

Γ ⇒ q@R,R1 ⊥ R2 Γ ⇒ q@R, p@R1 Γ, q@(R1 ∨R2) ⇒ q@R

R = R1 ⊎R2, p@R1, (p −∗ q)@R2 ⇒ q@R
L−∗

(p ∗ (p −∗ q))@R⇒ q@R
L∗

⇒ (p ∗ (p −∗ q))@R→ q@R

⇒ ((p ∗ (p −∗ q)) → q)@R

3.1. SEQUENT CALCULUS 63

As a first example of the use of the sequent calculus, above we have a derivation
of the sequent ⇒ ((p ∗ (p −∗ q)) → q)@R which represents the validity of (p ∗
(p −∗ q)) → q. This derivation essentially consists of an application of the rule
L∗ followed by an application of the rule L−∗. In this derivation Γ denotes the
formulas R = R1 ⊎R2, p@R1 generated by the application of rule L∗. The second
premise of the application of the rule L−∗ is derivable from an instance of the axiom
Γ, A⇒ A,∆. Note that ψ (in the L−∗ rule) is instantiated with R1. The first and
third premise follows from the fact that R = R1 ⊎ R2 reduces to R1 ⊥ R2 and
R = R1 ∪R2 (that part of the proof is not shown above).

Next we show how to use the calculus in reasoning about the equivalence of
weakest preconditions that arise in the practice of verifying the correctness of heap
manipulating programs. Let p denote the weakest precondition

(u ↪→ −) ∧ (z = 0 ◁ u = v ▷ v ↪→ z)

of the heap update [u] := 0 which ensures the postcondition v ↪→ z after assigning
the value 0 to the location denoted by the variable u, where ϕ ◁ b ▷ ψ abbreviates
(b ∧ ϕ) ∨ (¬b ∧ ψ) (in Section 4.4 a dynamic logic extension of separation logic
is introduced which generates this weakest precondition). The standard rule for
backwards reasoning in [188] gives the weakest precondition (u 7→ −) ∗ (u 7→ 0 −∗
v ↪→ z), which we denote by p′. These preconditions are equivalent because both
are the weakest.

In fact, the equivalence between the above two formulas can be expressed in
quantifier-free separation logic, for which a complete axiomatization of all valid
formulas has been given in [70]. In the sequent calculus we can express the
equivalence of p and p′ in terms of the sequent fun(R) ⇒ (p↔ p′)@R. Here R is an
arbitrary binary relation symbol used to represent the current interpretation of the
points-to relation. We abbreviate ∀x, y, z((R(x, y) ∧R(x, z)) → y = z) by fun(R).
A proof of the above sequent amounts to proving the sequents fun(R), p′@R⇒ p@R
and fun(R), p@R⇒ p′@R.

Proposition 3.1.3. ⊢ fun(R), p@R⇒ p′@R.

Proof. This direction is easy to prove, by a case analysis whether u = v holds or
not. If u = v, then z = 0 and so we can easily prove v ↪→ z in a heap where u ↪→ 0.
Otherwise, if u ̸= v, then v ↪→ z follows immediately.

Lemma 3.1.4. ⊢ fun(R), p′@R⇒ p@R.

Proof. Below we present a high-level proof of the first sequent, abstracting from
some basic first-order reasoning in the calculus. By an application of L∗ to derive
the sequent fun(R), p′@R⇒ p@R it suffices to derive

fun(R), R = R1 ⊎R2, (u 7→ −)@R1, (u 7→ 0 −∗ v ↪→ z)@R2 ⇒ p@R

for some fresh R1 and R2. Let ψ(x, y) denote the binary formula x = u ∧ y = 0.
Further, let Γ denote the set of formulas fun(R), R = R1 ⊎R2, (u 7→ −)@R1. By
an application of the rule L−∗ it then suffices to prove the following sequents (from

64 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

Γ ⇒ ∆ we can derive Γ ⇒ A,∆ by right-weakening). First we prove Γ ⇒ R2∩ψ = ∅:
By the points-to rules the rooted assertion (u 7→ −)@R1 (appearing in Γ) reduces to
∃z(R1(u, z)∧∀x, y(R1(x, y) → x = u∧y = z)) (the forall-part of the formula is due
to the ‘strict’ points-to which states that the domain contains u as its only location).
Further, R2 ∩ ψ = ∅ logically boils down to ¬∃x, y(R2(x, y) ∧ (x = u ∧ y = 0)),
that is, ¬R2(u, 0), which in basic first-order logic follows from ∃zR1(u, z) and the
assumptions R = R1 ⊎R2 and fun(R).

Second, we prove Γ ⇒ (u 7→ 0)@ψ: By the points-to rules (u 7→ 0)@ψ (using
the expanded definition ϕ of u 7→ 0 and the definition of the substitution ϕ[ψ/ ↪→])
reduces to (u = u) ∧ (0 = 0) ∧ ∀x, y((x = u ∧ y = 0) → (x = u ∧ y = 0)) which is
equivalent to true.

And, finally, we prove Γ, (v ↪→ z)@(R2 ∨ ψ) ⇒ p@R: First note that (again, by
the points-to rules)

((u ↪→ −) ∧ (z = 0 ◁ u = v ▷ v ↪→ z))@R

reduces to
(∃zR(u, z)) ∧ (z = 0 ◁ u = v ▷ R(v, z))).

The assertion ∃zR(u, z) clearly follows from the assumptions R = R1 ⊎ R2 and
(u 7→ −)@R1 in Γ. To prove z = 0 ◁ u = v ▷ R(v, z), we first reduce the assumption
(v ↪→ z)@(R2 ∨ ψ) to R2(v, z) ∨ (v = u ∧ z = 0). Now, if v = u then ¬R2(v, z),
because of the assumptions fun(R), R = R1⊎R2 and (u 7→ −)@R1. So we have that
z = 0. Otherwise, we have R2(v, z), and thus R(v, z), because R = R1 ⊎R2.

3.2 Soundness and completeness

We denote by ⊢ Γ ⇒ ∆ that there exists a proof of the sequent Γ ⇒ ∆. To define
|= Γ ⇒ ∆, let σ denote a substitution which assigns to every binary relation symbol
R of the sequent Γ ⇒ ∆ a binary formula ϕ. Such a substitution σ simply replaces
occurrences of R(t, t′) by ϕ(t, t′), where σ(R) = ϕ(x, y). By |= Γ ⇒ ∆ we then
denote that A, ρ |=

∧
Γσ (that is, A, ρ |= Aσ, for every A ∈ Γ) implies A, ρ |=

∨
∆σ

(that is, A, ρ |= Bσ, for some B ∈ ∆), for every A, ρ and every substitution σ.
In the soundness proof below we use these substitutions to instantiate the fresh

binary relation symbols introduced in the rules L∗ and R−∗. Note that updating
the interpretation of these symbols (as provided by A) would affect the semantics
of the separating connectives if binary formulas would refer to these fresh binary
relation symbols (note that they are only supposed not to appear in formulas of
the conclusion of the rules L∗ and R−∗). See also the previous discussion about
‘bookkeeping devices’.

We generalize the above notions of derivability and validity to possibly infinite
Γ: Γ ⊢ ∆ indicates that ⊢ Γ′ ⇒ ∆, for some finite Γ′ ⊆ Γ, and Γ |= ∆ indicates
that for every substitution σ we have that A, ρ |= Γσ (that is, A, ρ |= Aσ, for every
A ∈ Γ) implies A, ρ |= Bσ, for some B ∈ ∆.

For the soundness proof we need the following substitution lemma.

3.2. SOUNDNESS AND COMPLETENESS 65

Lemma 3.2.1 (Substitution lemma). A,RelA(ϕ), ρ |= p if and only if A, ρ |=
p[ϕ/ ↪→], for any semi-pure formula p.

Theorem 3.2.2 (Soundness). We have that ⊢ Γ ⇒ ∆ implies |= Γ ⇒ ∆.

Proof. We prove that the rules for the separating connectives preserve validity. The
points-to rules are sound because A,RelA(ϕ), ρ |= p if and only if A, ρ |= p[ϕ/ ↪→],
for any semi-pure formula p (note that p[ϕ/ ↪→] is a pure first-order formula which
does not depend on the heap).

L∗: Let A, ρ |= Γσ and A, ρ |= (pσ ∗ qσ)@ϕσ. We have to show that A, ρ |=∨
∆σ. By Lemma 3.1.2, there exist ϕ1 and ϕ2 such that A, ρ |= (ϕσ) = ϕ1 ⊎ ϕ2,

A, ρ |= pσ@ϕ1, and A, ρ |= qσ@ϕ2. Let σ′ = σ[R1, R2 := ϕ1, ϕ2]. Since R1 and R2

are fresh and as such do not appear in Γ, (p ∗ q)@ϕ, it follows that A, ρ |= Γ′σ′,
where Γ′ = Γ, ϕ = R1 ⊎ R2, p@R1, q@R2. By the validity of the premise we thus
obtain that A, ρ |=

∨
∆σ′. Since R1 and R2 also do not appear in ∆, we conclude

that A, ρ |=
∨

∆σ.
R∗: Let A, ρ |= Γσ and suppose that A, ρ ̸|=

∨
∆σ. From the validity of

the premises it then follows that A, ρ |= ϕσ = (ϕ1 ⊎ ϕ2)σ, A, ρ |= pσ@ϕ1σ, and
A, ρ |= qσ@ϕ2σ, By Lemma 3.1.2 we conclude A, ρ |= (pσ ∗ qσ)@ϕσ.

L−∗: Let A, ρ |= Γσ and A, ρ |= (pσ −∗ qσ)@ϕσ, and suppose that A, ρ ̸|=
∨

∆σ.
From the validity of the first two premises it then follows that A, ρ |= ϕσ ⊥ ψσ and
A, ρ |= pσ@ψσ. By Lemma 3.1.2 again, it follows that A, ρ |= qσ@(ϕσ ∨ ψσ). By
the validity of the third premise we thus derive that A, ρ ̸|=

∨
∆σ, which contradicts

our assumption.
R−∗: Let A, ρ |= Γσ and suppose that A, ρ ̸|=

∨
∆σ. We have to show that

A, ρ |= (pσ −∗ qσ)@ϕσ. Let ψ be such that A, ρ |= ψ ⊥ (ϕσ) and A, ρ |= pσ@ψ.
Further, let R be a fresh variable and σ′ = σ[R := ψ]. It follows that A, ρ |= Γ′σ′,
where Γ′ = Γ, R ⊥ ϕ, p@R and A, ρ ̸|=

∨
∆σ′. And so we derive from the validity

of the premise of the rule that A, ρ |= qσ@(ϕσ ∪ψ). Since ψ was arbitrarily chosen,
by Lemma 3.1.2 again we conclude that A, ρ |= (pσ −∗ qσ)@ϕσ.

As a corollary we obtain that Γ ⊢ ∆ implies Γ |= ∆.
Following the completeness proof of first-order logic as described in [108], it

suffices to show that every consistent set of formulas is satisfiable (the so-called
‘model existence theorem’). A set of formulas Γ is consistent if Γ ̸⊢ ∅. We first
show that every consistent set of formulas can be extended to a maximal consistent
set. To this end we assume an infinite set of ‘fresh’ binary relation symbols R that
do not appear in Γ. We construct for any consistent set Γ a maximal consistent
extension Γ∞, assuming an enumeration of all formulas A (which also covers all
first-order formulas). We define Γ0 = Γ and Γn+1 satisfies the general rule: if
Γn, An ̸⊢ ∅ then Γn ∪{An} ⊆ Γn+1, otherwise Γn+1 = Γn. Additionally, in case An
is added and An is of the form ∃xA or a rooted assertion (p ∗ q)@ϕ or ¬(p −∗ q)@ϕ,
we also include corresponding witnesses in Γn+1:

• If An is of the form ∃xA we additionally add A(y), where A(y) results from
replacing all free occurrences of x in A by the fresh variable y which does
not appear in Γn.

66 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

Note that A(y) can indeed be added consistently because from Γn, A(y) ⊢ ∅ we
would derive Γn,∃xA ⊢ ∅, which contradicts the assumption that Γn,∃xA ̸⊢ ∅.

• If An is of the form (p ∗ q)@ϕ we additionally add the formulas ϕ = R1 ⊎
R2, R1 ⊥ R2, p@R1, and q@R2, whereR1 andR2 are fresh (e.g., not appearing
in Γn).
Note that these formulas can indeed be added consistently because from
Γn, ϕ = R1⊎R2, R1 ⊥ R2, p@R1, q@R2 ⊢ ∅ we would derive Γn, (p ∗ q)@ϕ ⊢ ∅
(by rule L∗).

• If An is of the form ¬(p −∗ q)@ϕ (which is equivalent to ¬((p −∗ q)@ϕ)) we
additionally add the formulas R ⊥ ϕ, p@R(x, y), and ¬q@(ϕ ∨R), where R
is fresh (e.g., not appearing in Γn).
Note that these formulas can indeed be added consistently because from
Γn, R ⊥ ϕ, p@R(x, y),¬q@(ϕ ∨R) ⊢ ∅ we would derive Γn ⊢ (p −∗ q)@ϕ (by
rule R−∗), which contradicts the assumption that Γn,¬(p −∗ q)@ϕ ̸⊢ ∅.

We define Γ∞ =
⋃
n Γn. By construction Γ∞ is maximal consistent. Given

a maximal consistent set of formulas Γ, let AΓ = (D, I), where D is the set of
equivalences classes [x] = {y | x = y ∈ Γ}. For any relation symbol R (excluding
the points-to relation ↪→) we define

I(R)([x1], . . . , [xn]) = true if and only if R(x1, . . . , xn) ∈ Γ.

Given a maximal consistent set of formulas Γ and the structure AΓ = (D, I),
a corresponding valuation ρ assigns to every variable x an equivalence class [x].
However, in the sequel we will represent such a valuation by a substitution s which
simply assigns to each variable a variable. The value Is(x) of a variable x then is
given by the equivalence class [s(x)] of the variable s(x).

Given a substitution s and formula A (of the sequent calculus) we denote by ts
and As the result of replacing every free occurrence of a (first-order) variable x in
t and A by s(x), respectively. Note that (p@ϕ)s = ps@ϕ, because the meaning of
p@ϕ does not depend on the free variables x and y of the binary formula ϕ(x, y).

Given a maximal consistent set of formulas Γ and the structure AΓ = (D, I), it
follows that Is(x) = [xs], for every variable x and substitution s.

Lemma 3.2.3. Given a maximal consistent set of formulas Γ and the structure
AΓ = (D, I), we have A, s |= A if and only if As ∈ Γ, for every formula A and
substitution s.

Proof. The proof proceeds by induction on the following well-founded ordering
A < B on formulas of the sequent calculus: Let #A = (n,m), where n denotes the
number of occurrences of the separating connectives and the @-connective of A and
m denotes the number of occurrences of the (standard) first-order logical operations
of A. Then A < B if #A < #B, where the latter denotes the lexicographical
ordering on N × N (w.r.t. the standard ‘smaller than’ ordering on the natural
numbers). We treat the following main cases (for notational convenience A denotes
the structure AΓ).

3.2. SOUNDNESS AND COMPLETENESS 67

• For any semi-pure formula p (that is, which does not involve occurrences of
the separating connectives) we have:
A, s |= p@ϕ if and only if (by definition)
A,RelA(ϕ), s |= p if and only if (substitution lemma 3.2.1)
A, s |= p[ϕ/ ↪→] if and only if (induction hypothesis)
(p[ϕ/ ↪→])s ∈ Γ if and only if
(p@ϕ)s ∈ Γ.
Note that by an application of the points-to rules (p[ϕ/ ↪→])s ∈ Γ implies Γ ⊢
(p@ϕ)s, and so (p@ϕ)s ∈ Γ, by the maximal consistency of Γ. On the other
hand, let (p@ϕ)s ∈ Γ and assume (p[ϕ/ ↪→])s ̸∈ Γ, that is, (¬p[ϕ/ ↪→])s ∈ Γ,
by the maximal consistency of Γ. By the points-to rules it then follows that
Γ ⊢ (¬p@ϕ)s, which contradicts the consistency of Γ.

• Let A, s |= A, where A denotes the formula (p ∗ q)@ϕ. By Lemma 3.1.2 there
exist ϕ1 and ϕ2 such that A, s |= ϕ = ϕ1 ⊎ ϕ2, A, s |= p@ϕ1 and A, s |= q@ϕ2.
From the induction hypothesis it follows that ps@ϕ1, qs@ϕ2, ϕ = ϕ1 ⊎ ϕ2 ∈ Γ
(note that the first-order formula ϕ = ϕ1 ⊎ ϕ2 does not contain free variables,
and thus is not affected by the substitution s). So we derive by rule R∗
that Γ ⊢ (ps ∗ qs)@ϕ. By maximal consistency of Γ, we then conclude that
(ps ∗ qs)@ϕ ∈ Γ, that is, As ∈ Γ.
On the other hand, let As ∈ Γ. That is, (ps ∗ qs)@ϕ ∈ Γ. By the construction
of Γ we have ϕ = R1 ⊎ R2, ps@R1, qs@R2 ∈ Γ, for some witnesses R1 and
R2. By the induction hypothesis it then follows that A, s |= p@R1 and
A, s |= p@R2. Further, the induction hypothesis gives A, s |= ϕ = R1 ⊎ R2

(again, note that the formula ϕ = R1 ⊎ R2 has no free variables, and thus
is not affected by the substitution s). We conclude by Lemma 3.1.2 that
A, s |= (p ∗ q)@ϕ.

• Let A, s |= A, where A denotes the formula (p −∗ q)@ϕ. Suppose As ̸∈ Γ.
By the maximal consistency of Γ, we then have ¬(ps −∗ qs)@ϕ ∈ Γ. By
construction R ⊥ ϕ, ps@R,¬qs@(ϕ ∨ R) ∈ Γ, for some witness R, which
contradicts A, s |= (p −∗ q)@ϕ (after application of the induction hypothesis
and using Lemma 3.1.2 again).
On the other hand, let As ∈ Γ. To show that A, s |= (p −∗ q)@ϕ, let
A, s |= ϕ ⊥ ψ and A, s |= p@ψ, for some binary formula ψ. By the induction
hypothesis we have that ϕ ⊥ ψ, ps@ψ ∈ Γ. Suppose that qs@(ϕ ∨ ψ) ̸∈ Γ,
that is ¬qs@(ϕ∨ψ) ∈ Γ (Γ is maximal consistent), and thus Γ, qs@(ϕ∨ψ) ⊢ ∅.
Applying rule L−∗ we then derive Γ, (ps −∗ qs)@ϕ ⊢ ∅, which contradicts the
consistency of Γ ((ps −∗ qs)@ϕ ∈ Γ). So we have that qs@(ϕ∨ψ) ∈ Γ, that is,
A, s |= q@(ϕ ∨ ψ), by the induction hypothesis. Since ψ is chosen arbitrarily,
it follows by Lemma 3.1.2 that A, s |= (p −∗ q)@ϕ.

• Let A be a formula p@ϕ, where p denotes a semi-pure formula. Let R =
RelA(ϕ). We then have:
A, s |= p@ϕ iff (by definition)
A,R, s |= p iff (straightforward induction on p)

68 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

A, s |= p[ϕ/ ↪→] iff (induction hypothesis for p[ϕ/ ↪→])
ps[ϕ/ ↪→] ∈ Γ iff (by the points-to rules)
ps@ϕ ∈ Γ.
Note that applying the substitution s to p@ϕ and p[ϕ/ ↪→] results in ps@ϕ
and ps[ϕ/ ↪→].

The downward Löwenheim–Skolem property follows. It should be noted that we
cannot remove from the constructed model the binary relation symbols which are
introduced as witnesses, as these determine the notion of first-order definability.

Theorem 3.2.4 (Completeness). We have that Γ |= ∆ implies Γ ⊢ ∆.

Compactness follows. We thus derive (by Lindström’s theorem [210]) that this
interpretation of separation logic is as expressive as first-order logic.

3.3 Natural deduction
The sequent calculus introduced and proven sound and complete in the previous
sections was defined in terms of three syntactic categories: the pure first-order
formulas, the separation logic formulas, and the rooted formulas closed under
propositional connectives and quantification. In this section, we investigate what
happens when we consider only a single syntactic category of formulas: those of
separation logic closed under the @-connective. We thus introduce the extended
separation logic formulas by the following abstract grammar:

ϕ, ψ ::= ⊥ | (x
.
= y) | C(x1, . . . , xn) | (ϕ→ ψ) | (∀xϕ) | (ϕ ∗ ψ) | (ϕ −∗ ψ) | (ϕ@ψ)

The new @-connective can be understood as a binder of ↪→, in the sense that it lets
the interpretation of ψ determine the denotation of ↪→ with respect to which the
formula ϕ is interpreted. Revisiting Definition A.1.6 (Free and bound variables),
we need to add the following clauses:

• FV (ϕ@ψ) = FV (ϕ) ∪ (FV (ψ) \ {x, y}), and

• BV (ϕ@ψ) = BV (ϕ) ∪ BV (ψ) ∪ {x, y}.

By abuse of notation, we may think of @ as a let binding in the following sense:

(ϕ@ψ) = let ↪→ := (λxλy. ψ) in ϕ

since the interpretation of ↪→ becomes ‘bound’ in ϕ by the let binding, and the
free variables x and y in ψ are ‘captured’ by the abstraction. Further, for technical
convenience, we also have second-order binary variables R,R1, . . ., but it is not
possible to quantify over such second-order variables.

We now give an extension of the natural deduction calculus for classical logic
in the following way. The objects of this proof system, called RSL, are the above
formulas of extended separation logic. Derivability in this proof system is denoted
by ⊢. We have the usual axioms and proof rules of natural deduction, and add the
axioms and proof rules of Figure 3.2.

We have the following example proofs using the above proof system.

3.3. NATURAL DEDUCTION 69

(ϕ@(x ↪→ y)) ↔ ϕ
(L)

(ϕ@ψ) ↔ ϕ[ψ/ ↪→]
(R)

((ϕ@ψ) → (χ@ψ)) ↔ ((ϕ→ χ)@ψ)
(@→)

((∀xϕ)@ψ) ↔ (∀x(ϕ@ψ))
(@∀)

(ϕ@(ψ@χ)) ↔ ((ϕ@ψ)@χ)
(A)

(∀x, y(ψ ↔ χ))

((ϕ@ψ) ↔ (ϕ@χ))
(E) ⊥@ψ

⊥ (@⊥)

(ϕ ∗ ψ)@χ

χ=R1⊎R2
ϕ@R1
ψ@R2

...
ξ

ξ
(∗E)

χ = χ1 ⊎ χ2 ϕ@χ1 ψ@χ2

(ϕ ∗ ψ)@χ
(∗I)

(ϕ −∗ ψ)@χ χ ⊥ χ′ ϕ@χ′

ψ@(χ∨χ′)

...
ξ

ξ
(−∗E)

χ⊥R
ϕ@R

...
ψ@(χ ∨R)

(ϕ −∗ ψ)@χ
(−∗I)

Figure 3.2: Natural deduction system for extended separation logic. In the rule
(R) the formula ϕ is semi-pure. In the rule (∗E), R1, R2 do not occur in ξ. In the
rule (−∗I), R does not occur in ϕ, ψ, χ.

70 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

Proposition 3.3.1. ⊢ emp@⊥.

Proof. Recall that emp abbreviates ∀x, y.¬(x ↪→ y). We apply (@∀) and (∀I)
twice, so now it suffices to show (¬(x ↪→ y))@⊥. The logical negation abbreviates
(x ↪→ y) → ⊥, so we apply (@→) and by (→I) we may assume (x ↪→ y)@⊥. From
(R) and the new premise we infer ⊥, and hence by (⊥E) we have ⊥@⊥.

Proposition 3.3.2. ⊢ ϕ ∗ ψ → ψ ∗ ϕ.

Proof. By (L), it suffices to show (ϕ ∗ ψ → ψ ∗ ϕ)@(x ↪→ y), and by (@→) we may
assume (ϕ ∗ ψ)@(x ↪→ y) and show (ψ ∗ ϕ)@(x ↪→ y). We do this by (∗E), where
we assume (x ↪→ y) = R1 ⊎R2 for fresh R1, R2, and ϕ@R1 and ψ@R2. It is easy to
see we also have (x ↪→ y) = R2 ⊎R1, and hence by (∗I) we have (ψ ∗ ϕ)@(x ↪→ y),
completing the proof.

Proposition 3.3.3. ⊢ ϕ ∗ (ψ ∗ χ) ↔ (ϕ ∗ ψ) ∗ χ.

Proof. We have two directions (classical conjunction). We show ϕ ∗ (ψ ∗ χ) →
(ϕ ∗ ψ) ∗ χ first. By (L) we wrap it under the trivial root, and by (@→) we thus
assume (ϕ ∗ (ψ ∗ χ))@(x ↪→ y). We use (∗E) twice, to obtain (x ↪→ y) = R1 ⊎R2

and R2 = R3 ⊎R4, so that ϕ@R1, ψ@R3, χ@R4. We have R1 ⊥ R3, so R1 ⊎R3 is
defined. Further, we have (R1 ⊎R3) ⊥ R4 so (R1 ⊎R3) ⊎R4 is also defined. The
latter is equivalent to (x ↪→ y). Now by (∗I) twice, we obtain (ϕ ∗ ψ)@(R1 ⊎R3)
and ((ϕ ∗ ψ) ∗ χ)@(x ↪→ y). The other direction goes in a similar way.

Proposition 3.3.4. ⊢ (emp@ϕ) ↔ (∀x, y. ϕ→ ⊥).

Proof. Two classical directions:

• Assume emp@ϕ, and take arbitrary x0, y0 and assume ϕ(x0, y0). We need
to show ⊥. Unfold the abbreviation emp and we have (∀x, y. ¬(x ↪→ y))@ϕ.
Specializing this assumption with x0 and y0, we obtain ¬(x0 ↪→ y0)@ϕ. To
show ⊥ it is sufficient to show ⊥@ϕ. We apply our assumption, so it suffices
to show (x0 ↪→ y0)@ϕ. But that follows from our assumption ϕ(x0, y0).

• Assume (∀x, y. ϕ → ⊥). Unfold the abbreviation emp, and take arbitrary
x0, y0, and assume (x0 ↪→ y0)@ϕ. We need to show ⊥@ϕ, but it suffices to
show ⊥. From our assumption, we know ϕ(x0, y0) holds. But that contradicts
our earliest assumption.

Proposition 3.3.5. ⊢ ϕ ∗ emp ↔ ϕ.

Proof. There are two directions (classically).

• We assume (ϕ ∗ emp)@(x ↪→ y) and need to show ϕ@(x ↪→ y). From
our assumption we have ϕ@R1 and emp@R2 and (x ↪→ y) = R1 ⊎ R2.
Since emp@R2 we know R2 = ⊥ (by previous proposition), and hence
(x ↪→ y) = R1. So by ϕ@R1 we then have ϕ@(x ↪→ y).

3.3. NATURAL DEDUCTION 71

• We assume ϕ@(x ↪→ y) and need to show (ϕ ∗ emp)@(x ↪→ y). To show the
latter it suffices to show (x ↪→ y) = (x ↪→ y) ⊎ ϵ where ϵ = ⊥. Clearly the
disjoint union of those two relations is defined, and we already have ϕ(x ↪→ y).
Also we have emp@ϵ (by our previous proposition).

Proposition 3.3.6. The following holds:

• ⊢ (ϕ ∨ ψ) ∗ χ↔ ϕ ∗ χ ∨ ψ ∗ χ,

• ⊢ (ϕ ∧ ψ) ∗ χ→ ϕ ∗ χ ∧ ψ ∗ χ,

• ⊢ (∃xϕ(x)) ∗ ψ ↔ ∃x(ϕ(x) ∗ ψ),

• ⊢ (∀xϕ(x)) ∗ ψ → ∀x(ϕ(x) ∗ ψ),

• ⊢ ϕ ∗ (ϕ −∗ ψ) → ψ.

Proof. Left as exercises for the reader, as their proofs are not long. The proofs are
also formalized, see Appendix D.

Note that distributivity of conjunction (universal quantification) and separating
conjunction only works in one direction.

Proposition 3.3.7. The following holds:

• ⊢ ■ϕ→ ϕ,

• ⊢ ■ϕ→ (ϕ@ψ),

• ⊢ ■(ϕ→ ψ) → ϕ@χ→ ψ@χ,

• ⊢ ■(ϕ→ ϕ′) → ■(ψ → ψ′) → ϕ ∗ ψ → ϕ′ ∗ ψ′,

• ⊢ (x ↪→ y) ↔ (x 7→ y) ∗ ⊤,

• ⊢ ¬(x ↪→ −) → (((x 7→ y) −∗ (x 7→ y) ∗ ϕ) ↔ ϕ).

Proof. Left as exercises for the reader, as their proofs are not long. The proofs are
also formalized, see Appendix D.

Proposition 3.3.8. If ϕ@ψ is deducible for every ψ, then ⊢ ■ϕ.

Proof. If ϕ@ψ is deducible for every heap description, then ϕ cannot depend
on the heap and as such it holds in every heap. The proof is formalized, see
Appendix D.

Proposition 3.3.9. If ϕ ↔ ψ is deducible, and we have a deduction of χ from
premises Γ then we may replace any occurrence of ϕ by ψ in any of the premises
in Γ and the conclusion χ.

We again investigate the weakest precondition of the postcondition (v ↪→ z)
and the program [u] := 0. As before, let p denote the weakest precondition
(u ↪→ −)∧(z = 0◁u = v▷v ↪→ z), where again ϕ◁b▷ψ abbreviates (b∧ϕ)∨(¬b∧ψ).
Let p′ denote the weakest precondition (u 7→ −) ∗ (u 7→ 0 −∗ v ↪→ z).

72 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

Proposition 3.3.10. ⊢ p→ p′.

Proof. The proof can be formalized, see Appendix D.

Lemma 3.3.11. ⊢ p′ → p.

Proof. The proof can be formalized, see Appendix D.

Note that it is not needed to assume functionality of the heap (since the
separating implication speaks of all disjoint relational heaps, including those that
satisfy functionality).

3.4 Soundness and completeness
We shall give a general relational semantics to these extended separation logic
formulas, but to do so we need to construct the satisfaction relation in two stages.

Definition 3.4.1. A general relational structure H = (A, H) consists of a structure
A = (A, I) with domain A and a set of binary relations H ⊆ P(A×A).

In the first stage, we give a general relational semantics GRSL which is suitable
for interpreting the let binding. We shall use valuations ρ that assign both the
first-order and binary second-order variables. The binary second-order variables
are not constrained and ranges over arbitrary binary relations between elements
of the domain of the underlying structure. Also the relation R is not constrained
and ranges over arbitrary relations, whereas in the interpretation of the separating
connectives quantification is restricted to the set of relations of the general relational
structure.

Definition 3.4.2 (Satisfaction relation). Given a general relational structure
H = (A, H) with domain A and interpretation I, a valuation ρ of A, a binary
relation R ⊆ A×A, and an extended separation logic formula ϕ. The satisfaction
relation H,R, ρ |=GRSL ϕ is defined inductively on the structure of ϕ:

• H,R, ρ |=GRSL ⊥ never holds,

• H,R, ρ |=GRSL (x
.
= y) iff ρ(x) = ρ(y),

• H,R, ρ |=GRSL (x ↪→ y) iff (ρ(x), ρ(y)) ∈ R,

• H,R, ρ |=GRSL R(x1, x2) iff (ρ(x1), ρ(x2)) ∈ ρ(R),

• H,R, ρ |=GRSL C(x1, . . . , xn) iff (ρ(x1), . . . , ρ(xn)) ∈ CI ,

• H,R, ρ |=GRSL ϕ→ ψ iff H,R, ρ |=GRSL ϕ implies H,R, ρ |=GRSL ψ,

• H,R, ρ |=GRSL ∀xϕ iff H,R, ρ[x := a] |=GRSL ϕ for every a ∈ A,

• H,R, ρ |=GRSL ϕ ∗ ψ iff H,R1, ρ |=GRSL ϕ and H,R2, ρ |=GRSL ψ for some
R1,R2 ∈ H such that R = R1 ∪R2 and R1 ⊥ R2,

3.4. SOUNDNESS AND COMPLETENESS 73

• H,R, ρ |=GRSL ϕ −∗ ψ iff H,R′, ρ |=GRSL ϕ implies H,R∪R′, ρ |=GRSL ψ
for every R′ ∈ H such that R ⊥ R′,

• H,R, ρ |=GRSL ϕ@ψ iff H,R′, ρ |=GRSL ϕ for R′ = RelH,R,ρ(ψ).

where RelH,R,ρ(ψ) denotes {⟨dx, dy⟩ | H,R, ρ[x, y := dx, dy] |=GRSL ψ} ⊆ A×A.

Note that if one takes H to be the set of all finite relations and restrict to the
(non-extended) formulas of separation logic, we obtain weak relational separation
logic, and similarly if one takes H to be the set of all relations, we obtain full
relational separation logic.

For the second stage, we define the following class of general relational structures.
This class captures semantic comprehension by means of a closure condition on
the set of relations, that constraints the range of second-order quantifiers implicitly
used for giving semantics to the separating connectives, in the sense that every
binary relation that can be expressed by an extended formula of separation logic
must be in the set of binary relations of the general structure too.

Definition 3.4.3. A comprehensive relational structure H = (A, H) is a general
relational structure such that for every relation R ∈ H, valuation ρ of A where
ρ(R) ∈ H for every second-order variable R, and extended formula of separation
logic ψ, we have RelH,R,ρ(ψ) ∈ H.

We then define our intended semantics as follows.

Definition 3.4.4 (Satisfaction relation). Given a comprehensive relational struc-
ture H = (A, H), a relation R ∈ H, and valuation ρ of A where ρ(R) ∈ H for every
second-order variable R, we define the satisfaction relation H,R, ρ |=RSL ϕ with
the same conditions as given before in Definition 3.4.2.

Notice how in this satisfaction relation, compared to the previous stage, the
relation R and the value of second-order variables are constrained to be in H.
Since the semantic comprehension condition imposed on comprehensive relational
structures is expressed using the first stage semantics, there is no circularity in the
condition that R (and the value of any second-order variable) needs to be in H.

Again, note that if one takes H to be the set of all finite relations, to obtain
weak relational separation logic, we may fail to make a comprehensive relational
structure out of it: there is a formula, such as ⊤, that express that infinitely many
locations are related to a value, but that contradicts the requirement that we restrict
to finite relations. There is no problem for structures with finite domain, since
there weak relational separation logic and full relational separation logic coincide.
If one takes H to be the set of all relations on a structure with infinite domain,
we obtain full relational separation logic, which is also trivially a comprehensive
relational structure. It does seem possible to construct a comprehensive relational
structure out of a set H consisting of all finite and cofinite relations, but we leave
that structure for the reader to investigate further.

From the definition above, we can see that the formula ψ in the let binding
(ϕ@ψ) is a type with free variables among x and y. In particular, we have the
properties (L)eft-root, (R)ight-root, (A)ssociative-root, and (E)quivalent-root:

74 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

Lemma 3.4.5 (Soundness I).

(L) H,R, ρ |=RSL (ϕ@(x ↪→ y)) ↔ ϕ,

(R) H,R, ρ |=RSL (ϕ@ψ) ↔ ϕ[ψ/ ↪→] where ϕ is semi-pure,

(A) H,R, ρ |=RSL (ϕ@(ψ@χ)) ↔ ((ϕ@ψ)@χ),

(E) H,R, ρ |=RSL (∀x, y(ψ ↔ χ)) → ((ϕ@ψ) ↔ (ϕ@χ)).

Proof. (L) Suppose H,R, ρ |=RSL (ϕ@(x ↪→ y)) holds, then we know that also
H,R, ρ |=RSL ϕ holds, since RelH,R,ρ(x ↪→ y) = R. The converse is similar.

(R) Suppose H,R, ρ |=RSL (ϕ@ψ) holds, then by definition we know that also
H,R′, ρ |=RSL ϕ holds for RelH,R,ρ(ψ) = R′. Since ϕ is semi-pure, in the
evaluation of ϕ we never change R′. Hence we can replace (z ↪→ w) by
ψ(z, w) in ϕ and we have that H,R, ρ |=RSL ϕ[ψ/ ↪→] holds. Note how the
free variables of ψ (other than x, y which are replaced by the variables z, w)
are still evaluated with respect to ρ. The converse is similar.

(A) Suppose H,R, ρ |=RSL (ϕ@(ψ@χ)) holds, then we know that H,R′, ρ |=RSL ϕ
holds for RelH,R,ρ(ψ@χ) = R′. We then also know that for every pair
⟨dx, dy⟩ ∈ R′ we have that H,R′′, ρ[x := dx, y := dy] |=RSL ψ where we take
RelH,R,ρ[x:=dx,y:=dy](χ) = R′′. Note that we have R′′ = RelH,R,ρ(χ), since
x and y are bound, and thus we have H,R′′, ρ |=RSL ϕ@ψ since we have
that H,R′′′, ρ |=RSL ϕ where RelH,R′′,ρ(ψ) = R′′′, from H,R′, ρ |=RSL ϕ and
knowing that R′ = R′′′.

(E) Similar to the cases before.

The following properties describe the interactions between connectives:

Lemma 3.4.6 (Soundness II).

(@⊥) H,R, ρ |=RSL (⊥@ψ) → ⊥,

(@→) H,R, ρ |=RSL ((ϕ@ψ) → (χ@ψ)) ↔ ((ϕ→ χ)@ψ),

(@∀) H,R, ρ |=RSL ((∀xϕ)@ψ) ↔ (∀x(ϕ@ψ)) where x is not free in ψ,

(∗E) H,R, ρ |=RSL ((ϕ ∗ ψ)@χ) ∧ (χ = R1 ⊎R2 ∧ (ϕ@R1) ∧ (ψ@R2) → ξ) → ξ
where R1, R2 do not occur in ξ,

(∗I) H,R, ρ |=RSL χ = χ1 ⊎ χ2 ∧ (ϕ@χ1) ∧ (ψ@χ2) → ((ϕ ∗ ψ)@χ),

(−∗E) H,R, ρ |=RSL ((ϕ −∗ ψ)@χ) ∧ χ ⊥ χ′ ∧ (ϕ@χ′) ∧ ((ψ@(χ ∨ χ′) → ξ)) → ξ,

(−∗I) H,R, ρ |=RSL (χ ⊥ R ∧ (ϕ@R) → (ψ@(χ ∨R))) → ((ϕ −∗ ψ)@χ)
where R does not occur in ϕ, ψ, χ.

We also have the following derived properties:

3.4. SOUNDNESS AND COMPLETENESS 75

Corollary 3.4.7.

• A,R, ρ |=RSL (ϕ@ψ) ↔ ϕ where ϕ is a pure formula,

• A,R, ρ |=RSL ((ϕ@ψ) ∧ (χ@ψ)) ↔ ((ϕ ∧ χ)@ψ),

• A,R, ρ |=RSL ((ϕ@ψ) ∨ (χ@ψ)) ↔ ((ϕ ∨ χ)@ψ),

• A,R, ρ |=RSL ((∃xϕ)@ψ) ↔ (∃x(ϕ@ψ)) where x is not free in ψ,

• A,R, ρ |=RSL ■ϕ→ (ϕ@χ).

The proof system RSL is sound with respect to the semantics RSL.

Lemma 3.4.8 (Soundness). Γ ⊢RSL ϕ implies Γ |=RSL ϕ.

Proof. By induction on the structure of a deduction. Note that the semantics
of RSL follows that of classical logic for all logical connectives, hence the proof
rules involving classical connectives are sound via their usual argument. For the
additional axioms and proof rules, see Lemma 3.4.5 and Lemma 3.4.6.

We now investigate a proof reduction technique. Every deduction in the natural
deduction proof system can be reduced to a deduction with only rooted formulas
of a particular shape, by introducing additional fresh binary variables. The shape
of rooted formulas we wish to obtain are precisely those that can be worked with
in our previous sequent calculus, i.e. rooted assertions with a pure right-side. The
purpose of the procedure is as follows. Suppose we are given a set of premises
Γ and a conclusion ϕ. Our goal is to obtain an equisatisfiable set of premises Γ′

and conclusion ϕ′ in which every occurrence of a rooted formula does not have
any roots occurring the left, has a first-order formula on the right, and is not
nested under separating connectives. Such equi-satisfiable set of premises then
allows us to obtain a proof using our previous sequent calculus, and that proof is
straightforwardly mapped to a proof in natural deduction.

We sketch out the following provability-preserving and semantics-preserving
operations on the premises and conclusion:

1. For all formula occurrences ψ@χ that are nested on the left under a top-
level root (. . . (ψ@χ) . . .)@ξ, we ‘push down’ the outer root until it reaches
the nested root, and we perform an associative root swap so that from
(. . . (ψ@χ) . . .)@ξ we obtain (. . . (ψ@(χ@ξ)) . . .). For the classical connectives
this ‘pushing down’ is straightforward. For (x ↪→ y), we can simply substitute
using the right root rule. For an occurrence that is a separating conjunction
(ψ1 ∗ ψ2)@ξ we introduce fresh binary variables R1, R2, replace the occurrence
with (ψ1@R1) ∧ (ψ2@R2), add the premise ξ = R1 ⊎R2, and proceed with
pushing down in the occurrences ψ1@R1 and ψ2@R2. A similar construction
happens for separating implication, but we leave one fresh variable open for
interpretation. We repeat this step until no longer we have roots nested
under the left.

76 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

2. For each formula occurrence ψ@χ that does not occur on the left under a
root and where χ is not first-order, in some formula of Γ or in the conclusion
ϕ, we introduce a fresh binary variable R. We add a premise on the top level
(∀x, y.R(x, y) ↔ χ), and replace χ in the occurrence ψ@χ by R(x, y).

3. For any rooted formula ψ@χ that occurs under a separating connective, we
dissolve the separating connective in a similar matter as described above.

Now we can show completeness of the natural deduction proof system by
reduction to a completeness theorem of the sequent calculus (that is similar to the
proof in Section 3.2, but slightly different due to its different semantics).

Lemma 3.4.9 (Completeness). Γ |=RSL ϕ implies Γ ⊢RSL ϕ.

Proof. The proof goes along the following lines, and mostly uses standard techniques
from interpretational proof theory [212]. We adapt the premises and conclusion in
an equisatisfiable way, as sketched out above. We then obtain a sequent Γ′ ⇒ ϕ′

for which, by the completeness result of the sequent calculus established previously
(but adapted to the new semantics), we can obtain a deduction. Every deduction
in sequent calculus can be mapped to a deduction in natural deduction. The
operations to obtain the adapted premises and conclusion can be reversed to obtain
a proof of the original conclusion ϕ with the original premises Γ in the natural
deduction proof system.

We gloss over the details comparing the semantics RSL and FORSL. However,
these details are not essential to the completeness result above: it is also possible
to prove the completeness of the proof system RSL directly, by replicating much of
the work done previously to show completeness of the sequent calculus (the model
existence theorem): again by constructing a maximal consistent set of formulas
of (extended) separation logic out of a given set of formulas, and constructing a
model out of it to show the satisfiability of the given set of formulas. After doing
such a direct proof of completeness, one also establishes a relation between the two
semantics.

3.5 Discussion
One may think of relational separation logic to be an abstraction of (functional)
separation logic in the following sense: suppose, in an object-oriented setting, we
would have a functional ‘points to’ relation for each field of an object. In the
abstract view of (one-step) reachability, it does not matter by which field an object
points to another object, what only matters is that another object is reachable
through some field. Reachability is thus modeled as a points-to relation that is not
necessarily functional, and interpreting the separating conjunction thus involves a
partition of objects. In particular, we have that the formula (x ↪→ −) ∗ (x ↪→ −)
should be equivalent to false, because an object x cannot be in both separate parts
at the same time. With the condition on the disjointedness of the domains of R1

and R2 this equivalence indeed holds.

3.5. DISCUSSION 77

However, and contrary to our intuition of separation, it is possible to satisfy
(x ↪→ −) ∗ (x ↪→ −) if we merely require the relations R1 and R2 to be disjoint
(since one part can assign the location x to a different value than the other part).
But then what does separate mean if an object x can be in both separate parts at
the same time?

We discuss the consequence of the fact that in relational separation logic the
points-to relation is no longer functional. We previously have seen the following
two concepts:

• We have that the primitive formula (x ↪→ y) expresses ‘x points to y’ or
‘location x has value y’. In the relational setting, we no longer have that if
(x ↪→ y) holds that y is the only value that x points to, since it is possible
that there are other values that x points to as well.

• We have that (x 7→ y) abbreviates ((x ↪→ y) ∧ ∀z, w((z ↪→ w) → x = z)),
which expresses that ‘x strictly points to y’ or ‘x points to y and only x is
allocated’. Similarly, in the relational setting, we also no longer have that
if (x 7→ y) holds that y is the only value that x points to, since it is also
possible that there are other values that the location x points to. However,
we do have that x is the only allocated location.

In the relational setting, that a location points to a value does not necessarily mean
that this location points to only one value. Thus it is warranted that we introduce
the following abbreviations:

(x ↪⇀ y) abbreviates ((x ↪→ y) ∧ ∀z((x ↪→ z) → y = z))

(x 7⇀ y) abbreviates ((x ↪→ y) ∧ ∀z, w((z ↪→ w) → x = z ∧ y = w))

where z is a fresh variable. We speak about these formulas in the following way:

• for (x ↪→ y) we say ‘x points to y’ or ‘location x has value y’,

• for (x ↪⇀ y) we say ‘x points to y alone’ or ‘location x has (and only has)
value y’,

• for (x 7→ y) we say ‘strictly x points to y’ or ‘x points to y and only x is
allocated’,

• for (x 7⇀ y) we say ‘strictly x points to y alone’ or ‘x points to y alone and
only x is allocated’ or ‘the one and only location-value pair is (x, y)’.

Strictness (resp. looseness) indicates exactly one (resp. at least one) location on
the heap, and narrowness (resp. wideness) indicates precisely one (resp. at least
one) value is associated to that location. The four points-to relations can be
systematized as in Table 3.1. The following sentences are valid:

∀x, y. (x 7⇀ y) ↔ (x 7→ y) ∧ (x ↪⇀ y),

∀x, y. (x 7→ y) ∨ (x ↪⇀ y) → (x ↪→ y),

78 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

Narrow Wide

Strict (x 7⇀ y) (x 7→ y)

Loose (x ↪⇀ y) (x ↪→ y)

Table 3.1: The four points-to relations.

and (x 7→ y) and (x ↪⇀ y) are themselves incomparable. If we have

∀x, y. (x ↪→ y) → (x ↪⇀ y)

then the points-to relation must be functional. This is the case in (functional)
separation logic as introduced in the previous chapter, but no longer for relational
separation logic. The latter formula is equivalent to fun(↪→).

In this chapter we have investigated relational separation logic, but how much
work does it take to adapt the semantics and the proof system to (functional)
separation logic?1 Both the semantics and the proof system of relational separation
logic rely on the fact that we can express relations using arbitrary binary formulas.
We can not simply use the proof system but restrict to functional interpretations
of the binary variables: the problem lies in that rooted assertions p@ϕ allow any
binary formula ϕ, which may denote non-functional relations as well. And the same
problem happens when considering comprehensive relational structures. However,
without a lot of effort we can overcome this problem, by introducing additional
notational conventions, obligations, and assumptions.

Similar to how terms can be added to a first-order logic that only has constant
symbols such as predicate and relation symbols, by declaring constant symbols
as individual symbols and function symbols, we can also keep track of a subclass
of binary formulas for which we declare the property of functionality holds. By
writing such binary formulas ϕ̂, to mean that ϕ must be functional, then we can
keep track for which formulas we have additional obligations to show functionality,
or assumptions that witness their functionality.

We can then adapt the proof system RSL to obtain the proof system SL:
additional proof obligations are required for the introduction rule of separating
conjunction (because the disjoint union of two functional relations is not necessarily
functional) and the elimination rule of separating implication (where also the
disjoint union is not necessarily functional). In the case of the elimination rule of
separating conjunction, we already know that splitting a functional relation always
results in two functional relations, leading to additional assumptions. In the case
of the introduction rule of separating implication we can add functionality (of the
relation representing the extension, and of the disjoint union of the outer heap and
the extension) as an additional assumptions.

1Many respectable colleagues have told the author that ‘nobody reads Ph.D. theses’—in the
interest of their reputation it is best to leave them anonymous. The full description of the proof
system SL and its soundness and completeness proof remain to be published in a forthcoming
journal article. However, from the sketch provided here, it is not difficult for a reader to come up
with it themselves.

3.5. DISCUSSION 79

Adapting GRSL to GSL involves restricting to partial functions h instead of
relations R, to obtain general heap structures. We then have the set FunH,h,ρ(ψ̂)
that denotes a partial function based on the formula ψ for which we know it has
the property of functionality. Consequently, we can consider heap structures closed
under semantic comprehension (for a restricted class of formulas, namely those
that define a functional relation) in a similar way as before, to obtain SL.

Finally, notice how in the rooted assertion ϕ@ψ the @-connective is related to
the binding operator (↓Rϕ) of the previous chapter, by comparing their semantics:

• A,R, ρ |=FRSL↓ (↓Rϕ) if and only if A,R, ρ[R := R] |=FRSL↓ ϕ,

• H,R, ρ |=GRSL ϕ@ψ iff H,R′, ρ |=GRSL ϕ for R′ = RelH,R,ρ(ψ).

In some sense, the binding operator ‘captures’ the current interpretation of R,
whereas in the interpretation of the @-connective we replace the current interpreta-
tion of R. The connection is interesting from the perspective of Henkin models of
second-order logic, which satisfy a comprehension axiom, by which we know that
every formula also denotes a relation over which one can quantify. If we would add
second-order variables to GRSL, the connection may become more obvious:

• A,R, ρ |=FRSL↓ (↓Rϕ) if and only if A,R, ρ[R := R] |=FRSL↓ ϕ,

• H,R, ρ |=GRSL ϕ@R if and only if H, ρ(R), ρ |=GRSL ϕ.

80 CHAPTER 3. PROOF THEORY OF SEPARATION LOGIC

Chapter 4

Reynolds’ logic

In Chapter B, we recall Hoare’s logic for reasoning about while-programs and
recursive programs. In this chapter, we investigate Reynolds’ logic, an extension of
Hoare’s logic for reasoning about pointer programs. We introduce a novel semantics
and several original proof systems for Reynolds’ logic, all interpreted with respect
to the same semantics: it is possible to reinterpret the original proof systems in the
novel semantics. We then introduce an extension to dynamic logic, called dynamic
separation logic, and show how to simplify program modalities. This yields the
discovery of an alternative proof system of Reynolds’ logic.

What is remarkable is that all the proof systems in this chapter are equivalent
in the following sense: the original proof system proposed by Reynolds and all
other proof systems in this chapter have exactly the same set of provable objects!
This justifies us to call all these proof systems which have a single common
semantics ‘Reynolds’ logic’, in honor of J.C. Reynolds. But, why an alternative
proof system for Reynolds’ logic? It would be fair to say, that the alternative
proof systems sheds light on the same matter from a different angle. In fact, what
distinguishes the new proof systems (both the weakest precondition calculus and
the strongest postcondition calculus) from the original ones is the property of
gracefulness. Gracefulness means that the weakest precondition of any statement
and a first-order formula remains a first-order formula, and similar for the strongest
postcondition. Furthermore, by the techniques developed in this chapter, we are
able to fill in a missing gap of proving that the global axioms can be derived from
the local axioms and the frame rule without using the magic wand, the connective
of separating implication.

Reynolds’ logic can be seen as an extension of Hoare’s logic in two ways:

• In Hoare’s logic the programming language is based on a first-order program
signature, but in Reynolds’ logic the programming language is based on a
pointer program signature. Moreover, the proof objects of the two proof
systems are specifications {ϕ} S {ψ}. In Hoare’s logic the formulas ϕ and ψ
are first-order formulas, whereas in Reynolds’ logic these formulas are further
extended to the formulas of separation logic.

81

82 CHAPTER 4. REYNOLDS’ LOGIC

• Since every formula of first-order logic is also a formula of separation logic, all
the instances of the axioms and rules of Hoare’s logic can also be considered
part of Reynolds’ logic.

However, the second point raises the question: how much rules of Hoare’s logic
remain sound also when extending the instances to formulas of separation logic?

If we consider the invariance rule

{ϕ} S {ψ}
{ϕ ∧ χ} S {ψ ∧ χ}

of Hoare’s logic, where the free variables of χ are not changed by the statement
S, then clearly we cannot extend this rule to arbitrary formulas of separation
logic: the rule would become unsound. The problem here lies in the fact that the
program S may change a location on the heap, but it is not easily recognized from
the syntax of the program what location has changed. This is in contrast to the
invariance rule, where an approximation of the effects of a statement in Hoare’s
logic is captured by access(S) and change(S).

An important proof rule that is novel in Reynolds’ logic, that is not part of
Hoare’s logic, is the so-called frame rule

{ϕ} S {ψ}
{ϕ ∗ χ} S {ψ ∗ χ}

where the free variables of χ are not changed by the statement S. Note that in this
rule we use separating conjunction instead of logical conjunction. However, it turns
out that the soundness of the frame rule is quite delicate [232]. In this chapter we
shall revisit the soundness proof of the frame rule, and give an alternative proof
that is more proof theoretic in nature.

As one can recall in Chapter B, due to the compositional nature of the semantics
of programs, it suffices here to restrict our attention to the base case, the pointer
manipulating operations, and not to the control structures of sequential composition,
if and while-statements, or recursive procedures, since these latter constructs of
the programming language are orthogonal to our current concerns. In fact, already
in [125], Ishtiaq and O’Hearn recognize that the novelty of Reynolds’ logic lies in
the treatment of the basic operations:

“We will not give a full syntax of [statements], as the treatment of
conditionals and looping statements is standard. Instead, we will
concentrate on assignment statements, which is where the main novelty
of the approach lies.”

It is the case that our previous discussion concerning the compositional nature of
program semantics naturally transfers to the context of pointer programs. However
it is important to note, in light of the previous discussion about the invariance rule,
that Hoare’s proof rules involving complex statements remain sound even when
the instances of formulas range over the formulas of separation logic.

83

To see why we first need to introduce the proper semantic basis in which we
can interpret the proof objects of Reynolds’ logic. Although the semantics is a
generalization of the standard semantics of separation logic, it is quite remarkable
to observe that the original axiomatization due to Reynolds is still sound with
respect to this general semantics.

Secondly, we present Reynolds’ logic in its usual way. There are four ways in
which the proof system of Reynolds’ logic can be presented: a local axiomatization,
and a global axiomatization, a backwards weakest precondition axiomatization, and
a forwards strongest postcondition axiomatization. In the first proof system with
the local axiomatization, however, the frame rule plays a crucial role. One can
recover the global axiomatization from the local axiomatization by using the frame
rule. Our only contribution here, is that we shall argue there is an alternative way
of proving the soundness of the frame rule, from a proof theoretical point of view,
rather than the ‘surprisingly delicate’ semantic point of view as done by Yang and
O’Hearn [232].

Third, we show the soundness and (relative) completeness of a novel weakest
precondition axiomatization, by introducing an extension to separation logic, called
dynamic separation logic, in which a logical modality is added that captures the
weakest precondition. We introduce pseudo-operations corresponding to heap
update and heap clear. It is crucial that these pseudo-operations are not part of
the programming language, and for both of them we show they satisfy a useful
meta-property that we capture by proving corresponding substitution lemmas. That
these pseudo-operations are not part of the programming language is crucial, since
the frame rule is not sound with respect to them. However, by introducing the
pseudo-operations on the logical level, and thereby not allowing the application of
the frame rule over them, we obtain a way of expressing the weakest precondition
of all other basic instructions in terms of these pseudo-instructions. In fact,
the pseudo-instructions satisfy a property called gracefulness, in the sense that
computing the weakest precondition of a pseudo-instruction with respect to a first-
order postcondition results in a first-order weakest precondition. Even stronger,
computing the weakest precondition of a pseudo-instruction with respect to the
fragment of separation logic without magic wand also results in a formula without
magic wand: thus eliminating magic wand from the generated weakest precondition.
It turns out that all the previous axiomatizations of Reynolds’ logic lack this
property of gracefulness.

Fourth, we recall two strongest postcondition axiomatizations of Reynolds’ logic,
again a local strongest postcondition axiomatization and a global strongest post-
condition axiomatization. We then also introduce a novel strongest postcondition
axiomatization by again using our previously introduced pseudo-instructions, and
we compare our alternative axiomatization with the two existing calculi.

In this chapter, we focus on classical separation logic as assertion language. In
Appendix C, our approach is also extended to intuitionistic separation logic, also
resulting in novel weakest preconditions and strongest postconditions. This shows
that our approach, of introducing pseudo-instructions, is robust under different
interpretations.

84 CHAPTER 4. REYNOLDS’ LOGIC

4.1 General semantics and memory models

In the Sections 2.2 and 2.3 we have established that both the standard semantics and
the full semantics of separation logic are not compact, leading to the impossibility
to have a complete finitary proof system. In this section we investigate two
more general semantics for separation logic. We introduce general heap structures,
which extends structures to include a set of heaps over which quantification in the
semantics of the separating connectives ranges. This approach is similar to the
general structures of Henkin semantics [108]. Although this semantics is sufficient
for interpreting separation logic formula, the set of heaps does not necessarily
contain all heaps needed to reason about memory modification effects of pointer
programs. Therefore, we also introduce the heap semantics, in which we extend
structures with a particular set of heaps called a memory model. We further show
the relation between the semantics based on memory models and the standard
semantics, full semantics, and novel semantics of separation logic for which we
obtained a sound and complete, finitary proof system in Section 3.2 and Section 3.4.

Given a structure A = (A, I) with domain A, and let H be a set of heaps
(partial functions from A to A) with h, h1, h2 ∈ H. Recall that we can express the
partitioning of heaps by h ≡ h1 ⊎ h2 which satisfies the following properties:

h ≡ h1 ⊎ h2 =⇒ dom(h1) ∩ dom(h2) = ∅, (4.1)

h ≡ h1 ⊎ h2 =⇒ h(a) =


h1(a) if a ∈ dom(h1),

h2(a) if a ∈ dom(h2),

undefined otherwise.
(4.2)

A general heap structure (for separation logic) can be used to give semantics to
separating connectives, where only the heaps in a given set of heaps are considered.
Our approach here is similar to Henkin’s general heap structures for higher-order
logic, where quantification over values of higher-order arities is restricted to range
over a given set of values.

Definition 4.1.1 (General heap structures). A general heap structure H = (A, H)
consists of a structure A = (A, I) with domain A and interpretation I and a set of
heaps H of partial functions from A to A.

A general heap structure thus includes a set of possible heaps, and in the general
semantics one limits quantification in the semantics of the separating conjunction
and separating implication to the given set of heaps. The satisfaction relation over
general heap structures can now be given. It is similar to Definition 2.2.1, except
for the following clauses that are relative to the given set of heaps.

Definition 4.1.2 (Satisfaction relation). Given a general heap structure H =
(A, H), a valuation ρ of A, a heap h of H, and a separation logic formula ϕ. The
satisfaction relation H, h, ρ |= ϕ is defined inductively on the structure of ϕ:

• . . .

4.1. GENERAL SEMANTICS AND MEMORY MODELS 85

• H, h, ρ |=GSL ϕ ∗ ψ iff H, h1, ρ |= ϕ and H, h2, ρ |= ψ for some h1, h2 ∈ H
such that h ≡ h1 ⊎ h2,

• H, h, ρ |=GSL ϕ −∗ ψ iff A, h′, ρ |= ϕ implies A, h′′, ρ |= ψ for every h′, h′′ ∈ H
such that h′′ ≡ h ⊎ h′.

The superscript GSL on |= stands for General Separation Logic. Note that in
general heap structures H = (A, H) we have that H can be empty, similar to the
situation of an empty domain in the classical semantics. However, in the context
of the satisfaction relation, we may assume the set of heaps is non-empty since h is
a heap in H. This situation is similar to the situation in classical logic where the
domain must be non-empty, since a valuation ρ assigns values to variables.

Similar to before, we have the coincidence condition and invariance under
renaming. Both propositions are with respect to a fixed heap in our memory model.

Proposition 4.1.3 (Coincidence condition). Given that ρ[FV (ϕ)] = ρ′[FV (ϕ)], it
follows that H, h, ρ |=GSL ϕ if and only if H, h, ρ′ |=GSL ϕ.

Proposition 4.1.4 (Invariance under renaming). Given a renaming π such that
all free variables of ϕ stay the same, i.e. π(v) = v for all v ∈ FV (ϕ). It follows
that H, h, ρ |=GSL ϕ if and only if H, h, ρ |=GSL π(ϕ).

Definition 4.1.5 (Denotation). The denotation of a formula HJϕKGSL is defined:

HJϕKGSL = {(h, ρ) | H, h, ρ |=GSL ϕ}.

We write H, h |=GSL ϕ to mean H, h, ρ |=GSL ϕ for all valuations ρ of A, and we
write H |=GSL ϕ to mean A, h |=GSL ϕ for all heaps h ∈ H. Given a sentence that
is satisfied, using the coincidence condition we can obtain that it is also satisfied
by the same general heap structure but with any other valuation: the valuation
has no influence on whether a sentence is satisfied by the structure, but the heap
does have such influence (as it does with standard and full semantics). So if ϕ is a
sentence, H, h |=GSL ϕ if and only if H, h, ρ |=GSL ϕ for some valuation ρ.

Given a sentence ϕ, we write |=GSL ϕ to mean that H |=GSL ϕ for all gneral
structures H, and we then say that ϕ is valid. Valid sentences in general separation
logic thus are properties that hold for all general heap structures.

An interesting instance is the general heap structure (A, {ϵ}) where ϵ is the
partial function that is never defined anywhere. This general heap structure clearly
satisfies the formula emp. Further, since we can split the empty heap only in
two empty heaps, we have that separating conjunction is equivalent to logical
conjunction. For a similar reason we have that separating implication is equivalent
to logical implication. Thus, any valid classical formula in which we replace (some)
logical conjunction and implication connectives by separating conjunction and
implication, respectively, is a valid separation logic formula with respect to the
general semantics. Note that this works since classical formulas do not have any
occurrence of a points-to relation, since the points-to relation is only available to
separation logic and not present in the signature.

86 CHAPTER 4. REYNOLDS’ LOGIC

A well-known example of a valid formula in the general semantics is

|=GSL (ϕ ∗ (ϕ −∗ ψ)) → ψ

where ϕ and ψ are arbitrary separation logic formulas. It is easily verified that this
formula is indeed valid: if a split is possible, then we can always recombine the two
separate parts of the heap by the separating implication to obtain the succedent of
the separating implication.

However, in the general semantics, there are formulas which are not valid, but
which are valid in both the standard and the full semantics of separation logic.
Take the formulas (x ↪→ y) and (x 7→ y) ∗ true. These formulas are equivalent in
both WSL and FSL. While it is the case that

|=GSL ∀x, y. ((x 7→ y) ∗ true) → (x ↪→ y),

the converse does not hold. Take the general heap structure H = (A, H) with the
domain A of A having at least two elements, and H being the set {ϵ, h} where
h(a) = a for some a ∈ A, and h(b) = b for some other b ∈ A, and undefined on all
other elements. Now we have H, h, ρ |=GSL (x ↪→ y) where ρ assigns x and y to a.
However, it is not the case that H, h, ρ |=GSL (x 7→ y) ∗ true, since H contains the
heap h but not the two subheaps making the split possible.

Another counter-example is the following implication (for any formula ϕ):

(x ↪̸→ −) ∧ ((x 7→ −) −∗ ((x 7→ −) ∗ ϕ)) → ϕ

which is valid in both WSL and FSL (in WSL we do not even need (x ↪̸→ −)).
However, this fails for GSL. We now take H = {ϵ}. Now, clearly, both a and b are
not allocated in every heap. Take a valuation in which x has value a, and y has
the value b. We could for example let ϕ express that y is allocated: (y ↪→ −). The
antecedent of the implication is satisfied in the empty heap: x is not allocated, and
for every heap in which x is allocated the succedent of the separating implication
holds for the joined heap (vacuously). However, ϕ is not satisfied, since y is not
allocated.

The counter-examples above demonstrates two issues with the general semantics.
We expect certain closure conditions to hold for the set H to be able to naturally
reason about the semantics of separation logic (stated informally):

• we expect that ϕ ∗ emp and ϕ are equivalent, so ϵ ∈ H;

• we expect that (x 7→ y) ∗ true and (x ↪→ y) are equivalent, but for that to
work we need that splitting off finite parts from any heap in H is also in H;

• under the assumption that there is some free space, that is (x ↪̸→ −), we
expect that (x 7→ −) −∗ ((x 7→ −) ∗ ϕ) and ϕ are equivalent, but for that to
work every finite extension of any heap in H must be in H too.

We thus consider sets of heaps which satisfy certain closure conditions, called
memory models. A memory model is a set of heaps that is closed under the opera-
tions of heap update and heap clear, and closed under heap existence conditions.

4.1. GENERAL SEMANTICS AND MEMORY MODELS 87

The combination of heap update and heap clear operations allows us to express
finite splits and finite extension as required. For example, for any heap h where
a ̸∈ dom(h) we can apply the heap update h[a := a′] to obtain a larger heap, which
can be split into the disjoint heaps h and ϵ[a := a′], since h[a := a′] ≡ h⊎ ϵ[a := a′].
Similarly, if a heap h can be split so that h ≡ h1 ⊎ ϵ[a := a′] then we know
a ̸∈ dom(h1) and consequently that h1 = h[a := ⊥].

Definition 4.1.6 (Memory model). A memory model over A is a set H of heaps
(partial functions from A to A) such that all the following conditions hold:

ϵ ∈ H, (4.3)
h[a := a′] ∈ H, (4.4)
h[a := ⊥] ∈ H, (4.5)

dom(h1) ∩ dom(h2) = ∅ =⇒ h′ ≡ h1 ⊎ h2 for some heap h′ ∈ H, (4.6)
h1 ⊆ h =⇒ h ≡ h1 ⊎ h′ for some heap h′ ∈ H, (4.7)

for every h, h1, h2 ∈ H and a, a′ ∈ A.

A memory model which satisfies all conditions except Equation (4.7) is called
a classical memory model. In fact, in the remainder of this chapter, all results
also hold for classical memory models: only in Chapter C, where we introduce
intuitionistic separation logic, it is necessary to consider memory models with the
additional condition of Equation (4.7). However, for uniformity in presentation, we
shall include the condition, even when it is strictly speaking not necessary.

It is not a problem to confuse a memory model and the set H of heaps, as long
as we have that H is a memory model: this convention is not different from taking
H as the carrier set that is closed under the given operations and conditions. There
are many memory models, and we have a look at various ways of constructing
them later in this section.

The above conditions require compatibility conditions on the heap partitioning
relation. In particular, Equation (4.6) imposes the condition on the set H of
heaps that any two disjoint heaps can be merged, and Equation (4.7) imposes the
condition on H that if we know that heap h is an extension of heap h1 then there
must exists a heap h2 which consists of the remaining location-value mappings.
In fact, the last condition imposes that the empty heap must be in H by taking
h1 = h, thus Equation (4.3) is redundant.

Note that, in the case we work with the set of finite heaps, Equations (4.6) and
(4.7) do not add much. For any two disjoint finite heaps h1, h2, we can always
construct the heap which is their union h1 ⊎h2. This is easy to see, since any finite
heap can simply be regarded as a finite construction from the empty heap and a
finite association list of locations and values. The resulting finite heap simply zips
the two association lists together. Similarly, for any finite heap h, and hence also a
finite heap h1 ⊆ h, we clearly can find a heap h′ that is the remainder: we just
look at the association list of locations and values that comprise h and filter out
any of the locations that are in h1. These constructions are rather obvious.

88 CHAPTER 4. REYNOLDS’ LOGIC

However, and this is crucial, in the case of infinite heaps these constructions are
no longer straightforward. Equation (4.6) thus expresses that it must always be
possible to merge heaps, even if one of the two heaps is infinite. And, furthermore,
Equation (4.7) expresses that in case we have an infinite heap h and a (finite or
infinite) heap h1 we can always find the remainder of ‘subtracting’ h1 from h, that
is potentially infinite too.

Proposition 4.1.7. If h ≡ h1 ⊎ h2 and g ≡ h1 ⊎ h2 then h = g.

Proof. We have heap extensionality, h = g if h(a) = g(a) for all a ∈ A. But
h(a) is fixed by Equation (4.2), and so is g(a). Our property follows from a
case analysis of a: for either a ∈ dom(h1), or a ∈ dom(h2), or a ̸∈ dom(h1) and
a ̸∈ dom(h2), h(a) = g(a). The case a ∈ dom(h1) and a ∈ dom(h2) does not occur
by Equation (4.1).

Now we can use memory models to give semantics to the separating connectives,
where we consider memory models instead of arbitrary non-empty sets of heaps.

Definition 4.1.8 (Memory structures). A memory structure H = (A, H) is a
general heap structure consisting of a structure A = (A, I) with domain A and
interpretation I, and as set of heaps a memory model H over A.

Since MSL can be seen as GSL but restricted to a certain class of structures, we
also have the coincidence condition, invariance under renaming, and the denotation
of a formula HJϕKMSL:

HJϕKMSL = {(h, ρ) | H, h, ρ |=MSL ϕ}.

We shall use the superscript MSL to mean that the notions of satisfaction, validity,
and denotation, previously defined for general heap structures, are restricted to
memory structures.

Given a theory, i.e. a set of sentences Γ, we write H, h |=MSL Γ to mean that
all sentences in Γ are satisfied by all memory structures H = (A, H) and heaps
h ∈ H, that is, H, h |=MSL ϕ for all ϕ ∈ Γ. We may also speak of ‘Γ is satisfied by
H and h’. A theory Γ is satisfiable if there exists a memory structure H and heap
h such that H, h |= Γ. A theory Γ is finitely satisfiable if every finite subset of Γ is
satisfiable.

Given a sentence ϕ, we write Γ |=MSL ϕ to mean H, h |=MSL ϕ for all memory
structures H = (A, H) and heaps h ∈ H such that H, h |=MSL Γ, and say that
ϕ is a semantic consequence of Γ. In case Γ is a context and ϕ a formula, then
by Γ |=MSL ϕ we mean H, h, ρ |=MSL ϕ for all memory structures H = (A, H),
heaps h ∈ H, and valuations ρ of A such that H, h, ρ |=MSL ψ for all ψ ∈ Γ. Both
readings coincide if Γ and ϕ have no free variables. (The superscript MSL may be
dropped if clear from context.)

To investigate the relation between the semantics defined above, and the
standard and full semantics of separation logic defined earlier, we relate their
notions of validity. Our main objective now is to show that |=MSL ϕ implies
|=WSL ϕ and |=FSL ϕ. To do so, we construct a number of different memory

4.1. GENERAL SEMANTICS AND MEMORY MODELS 89

models given a fixed structure A with domain A. Note that there is a natural order
between memory models by measuring their cardinality. We will show that the
smallest memory model corresponds with the standard semantics, and the largest
memory model corresponds with the full semantics.

To consider the smallest memory model H, suppose we start out with the empty
set and add in only the necessary heaps to satisfy the requirements for H to be
a memory model. The empty heap ϵ must be in H. For every heap and pair of
elements of A, we can perform a heap update operation. Every finite sequence of
heap updates results in a heap. Performing a heap clear operation only removes a
location from the heap, which can be undone by performing a heap update again.
The set of finitely-based partial functions over A is the smallest memory model.

The largest memory model is simply the set of all partial functions over A.

Definition 4.1.9. A finite memory structure is a memory structure H = (A, H)
where H is the smallest memory model over A.

Definition 4.1.10. A full memory structure is a memory structure H = (A, H)
where H is the largest memory model over A.

Every structure induces a full memory structure, since the largest memory model
is unique. Similarly, every structure also induces a finite memory structure, since the
smallest memory model is also unique. It is easy to verify that the general semantics
restricted to finite memory structures coincides with the standard semantics, and
the general semantics restricted to full memory structures coincides with the full
semantics of separation logic. If the underlying structure has a finite domain,
then the smallest and largest memory model coincide (and this confirms that the
standard and full semantics coincide in this case too). If the structure has an
infinite domain, the smallest and largest memory model are separated.

Proposition 4.1.11. |=GSL ϕ implies |=MSL ϕ, and |=MSL ϕ implies |=WSL ϕ
and |=FSL ϕ.

Proof. If |=GSL ϕ then H |= ϕ for all general heap structures H. That includes all
memory structures H. Since each structure A induces a finite and full memory
structure, we also have |=WSL ϕ and |=FSL ϕ.

From the above proposition, there is an easy heuristic for finding invalid
sentences with respect to the general semantics: sentences that are invalid in either
the standard semantics or the full semantics are also invalid in the general semantics.
The counter-examples for either of them can be used as counter-example in the
general semantics, by taking one of the induced memory structures corresponding
to the specific counter-example.

Finally, before turning to the semantics of pointer programs, we consider the
relation between MSL and the semantics underlying the proof system SL (or,
RSL under the assumption that every heap is functional). In the completeness
proof of Chapter 3, we have constructed a structure out of a maximally consistent
set of separation logic formulas. It turns out that this constructed structure also is
a memory structure. Consider that in the constructed structure we have as set H of

90 CHAPTER 4. REYNOLDS’ LOGIC

heaps the set of first-order definable heaps. Now it is easy to see that the empty heap
is first-order definable, and given any heap h then the operations of heap update
and heap clear are also first-order definable since every element of the domain is
expressible, since we have explicitly taken as domain the equivalence classes of
terms and hence every element of the underlying structure has a denotation as a
term. Going further, for any two first-order definable heaps that are disjoint, we can
also form the disjoint union by simply taking the disjunction of the corresponding
formulas. And, finally, for any first-order definable heap and any first-order definable
subheap, we can also express the ‘subtraction’ of one heap from the other as a
first-order formula based on the given descriptions.

In the remainder we shall speak of comprehensive memory structures to mean
structures which lie in the intersection of the two classes of general structures,
namely those general structures that satisfies both the properties of a comprehensive
structure (i.e. closed under semantic comprehension) and the properties of a memory
structure (i.e. the set of heaps must be a memory model).

4.2 Semantics of pointer programs
In this section, we introduce the semantics of pointer programs following along the
lines of Chapter B on Hoare’s logic.

Given a first-order signature Σ. A pointer program signature PPS (Σ) includes
the following operations:

• the assignment operation x := y
(where y is an accessible and x is a changed program variable),

• the lookup operation x := [y]
(where y is an accessible and x is a changed program variable),

• the mutation operation [x] := y
(where x and y are accessible program variables),

• the allocation operation x := new(y)
(where y is an accessible and x is a changed program variable),

• the deallocation operation delete(x)
(where x is an accessible program variable),

and every test is a quantifier-free pure formula ϕ(x1, . . . , xn), with as accessible
program variables x1, . . . , xn corresponding to the free variables of ϕ. Every pointer
program signature is also a first-order program signature (see Definition B.1.2).
A pointer program is a statement formed from statements based on a pointer
program signature (and, similarly, a recursive pointer program consists of a set
of declarations and a main statement). Note that the tests of (statements of)
pointer programs are pure quantifier-free formulas, as before. To give semantics
to pointer programs, we introduce spatial machine models, analogous to logical
machine models of Chapter B. A spatial machine model is based on a memory

4.2. SEMANTICS OF POINTER PROGRAMS 91

structure H. The spatial machine model is a failure-sensitive machine model in the
sense that its states are pairs of heaps (in the set of heaps of H) and valuations (of
the underlying structure of H).

Before introducing the semantics, we introduce auxiliary concepts needed in
the formulation of spatial machine models. Given two heaps h, h′ (partial functions
over some set), then we say that h′ has a finite distance to h whenever it is the
case that h′ = h[a1 := a′1] . . . [an := a′n][an+1 := ⊥] . . . [an+k := ⊥]. Informally,
one obtains h′ by finitely many applications of heap update and heap clear to h.
This notion is symmetric: h′ has a finite distance to h if and only if h has a finite
distance to h′. Note that it is also possible that h and h′ have a finite distance
even in the case that both h and h′ are partial functions without a finite basis
(i.e. both have an infinite domain). Further, when we compare sets of states in
the notations X ≡ Y mod Z and X ≡ f(X) mod Z, we speak only about the
valuations and leave the heaps untouched.

Definition 4.2.1. A spatial machine model M is a pair of a memory structure H
and an operationalization consisting of:

• for each operation O, a transition function which is a partial function OM of
valuations to a set of valuations of H,

• for every operation x := y, the transition function (x := y)M is defined by
mapping (h, ρ) to (h, ρ[x := ρ(y)]),

• for every operation x := [y], the transition function (x := [y])M is defined by
mapping (h, ρ) to (h, s[x := h(s(y))]) if s(y) ∈ dom(h) and to fail otherwise,

• for every operation [x] := y, the transition function ([x] := y)M is defined by
mapping (h, ρ) to (h[s(x) := s(y)], s) if s(x) ∈ dom(h) and to fail otherwise,

• for every operation x := new(y), the transition function (x := new(y))M is
defined by mapping (h, ρ) to the set {(h[n := s(y)], s[x := n]) | n ̸∈ dom(h)},

• for every operation delete(x), the transition function (delete(x))M is defined
by mapping (h, ρ) to (h[s(x) := ⊥], s) if s(x) ∈ dom(h) and to fail otherwise,

• for the transition function OM we have the change condition that either
OM(h, ρ) = fail or ρ′[V1 \ change(O)] = ρ[V1 \ change(O)] for every (h′, ρ′) ∈
OM(h, ρ),

• for the transition function OM we have the access condition that states that
OM(h, ρ) ≡ OM(h′, ρ′) mod var(O) for every ρ, ρ′ for which ρ[access(O)] =
ρ′[access(O)] holds,

• for the transition function OM we have the effect condition that for every
(h′, ρ′) ∈ OM(h, ρ) we have that h′ has a finite distance to h,

• for the transition function OM we have the frame condition that for every
OM(h0, ρ) ̸= fail and (h′, ρ′) ∈ OM(h0 ⊎ h1, ρ), there is a h′0 such that
(h′0, ρ

′
0) ∈ OM(h0, ρ) and h′ = h′0 ⊎ h1.

92 CHAPTER 4. REYNOLDS’ LOGIC

Since spatial machine models are failure-sensitive machine models, we get the
operational and denotational semantics ‘for free’. We also write ⟨M,H⟩ for a spatial
machine model to indicate its underlying memory structure H. A spatial machine
model is a failure-sensitive machine model in the following sense: the state space
of a spatial machine model is the set of pairs of heaps and valuations of H, and
the given operationalization induces an operationalization for tests by associating
every quantifier-free pure formula ϕ to the set HJϕKMSL that denotes the pairs of
heaps and valuations that satisfy ϕ in structure H. Note that for these formulas
ϕ we have (h, ρ) ∈ HJϕKMSL if and only if ρ ∈ AJϕKCL where A is the underlying
structure of H, that is, tests do not depend on the heap.

In fact, in the operational semantics of pointer programs, we have as con-
figurations triples consisting of a program S, a heap h, and a valuation ρ. The
successful execution of any basic instruction S is denoted by (S, h, ρ) −↠ (✓, h′, ρ′),
whereas (S, h, ρ) −↠ fail denotes a failing execution (e.g. due to access of a ‘dan-
gling pointer’). The small-step semantics (and similar for the big-step semantics)
of the primitive operations are as follows, as follows from the definition of the
operationalization of spatial machine models above:

• (x := y, h, ρ) −→ (✓, h, ρ[x := ρ(y)]),

• (x := [y], h, ρ) −→ (✓, h, ρ[x := h(ρ(y))]) if ρ(y) ∈ dom(h),

• (x := [y], h, ρ) −→ fail if ρ(y) ̸∈ dom(h),

• ([x] := y, h, ρ) −→ (✓, h[ρ(x) := ρ(y)], ρ) if ρ(x) ∈ dom(h),

• ([x] := y, h, ρ) −→ fail if ρ(x) ̸∈ dom(h),

• (x := new(y), h, ρ) −→ (✓, h[n := ρ(y)], ρ[x := n]) where n ̸∈ dom(h),

• (delete(x), h, ρ) −→ (✓, h[ρ(x) := ⊥], ρ) if ρ(x) ∈ dom(h),

• (delete(x), h, ρ) −→ fail if ρ(x) ̸∈ dom(h).

Crucially, with this definition we abstract from out of memory errors, e.g. from
the heap which has no free location it is not possible to take a step with the
program x := new(y). Intuitively, this makes ‘out of memory’ behave similarly as
a divergence: it is as if the underlying implementation would keep searching for a
free spot on the heap, but diverge since it will never find one.

The other operations do have explicit failures: looking up the value of an
unallocated location results in fail, so do mutation of an unallocated location, or
the deallocation thereof.

Note that it is possible to instantiate this program semantics with different
structures, and thus different conceptions of the heap. In the standard semantics
one would use finite heaps, but it is also possible to base the operational semantics
on top of the full set of heaps (finite or infinite heaps) of any underlying structure,
or to base it on top of any other memory structure introduced in the previous
section. However, it is now obvious from the definition above that general structures

4.2. SEMANTICS OF POINTER PROGRAMS 93

are insufficient, because we want to define transitions in terms of heap updates and
heap clear operations.

Since we also have an interpretation where there are potentially infinite heaps,
the design choice to let allocation behave as a divergence in case of no free location
becomes more clear. In the case of finite heaps (but an infinite domain of the
underlying structure), allocations do not diverge, as is the case in the standard
semantics.

Just like in Hoare’s logic, we have that the access and change conditions can be
lifted to statements S.

Lemma 4.2.2 (Change Lemma). Given a set of proper states X,

X ≡ ⟨M,H⟩JSK(X) mod change(S).

Lemma 4.2.3 (Access Lemma). Given two sets of proper states X,Y such that
X ≡ Y mod (V \ access(S)), then

⟨M,H⟩JSK(X) ≡ ⟨M,H⟩JSK(Y) mod (V \ var(S)).

Similar to Hoare’s logic, these express that a statement only modifies the
variables change(S), and that the outcome of a statement is only dependent on
the variables access(S). However, note that these notions require the same initial
heap. These properties do not capture the so-called ‘heap footprint’ of a statement.
For dealing with the heap, we have the other two conditions: the effect and frame
conditions can also be lifted to statements.

Lemma 4.2.4 (Effect Lemma). For any (h′, ρ′) ∈ ⟨M,H⟩JSK(h, ρ) we have that
h′ has a finite distance to h.

Proof. Intuitively we only have to check the small-steps, and check that the property
is preserved compositionally. Since we already have that for every primitive
operation this property holds due to the definition of spatial machine models, it
suffices to observe that in a terminating execution we have only finitely many
steps.

A statement S which has no effect on the heap is called an effect-free statement,
whereas a statement that does have an effect on the heap is called effectful.

Lemma 4.2.5 (Frame Lemma I). If fail ̸∈ ⟨M,H⟩JSK(h0, ρ) then it is also the
case that fail ̸∈ ⟨M,H⟩JSK(h0 ⊎ h1, ρ).

Proof. We know an execution from the smaller heap h0 does not lead to failure.
Suppose we now add additional locations and this causes a failure to appear in the
computation. This failure must happen in some execution at a primitive operation
(the other statements do not cause failures). Due to the frame condition, and the
fact that the operationalization maps a state to either fail or a set of states, we
know that if a smaller heap does not lead to failure, a larger heap must also not.
But that contradicts the assumption that a failure appears in the computation
from a larger heap.

94 CHAPTER 4. REYNOLDS’ LOGIC

Lemma 4.2.6 (Frame Lemma II). Given fail ̸∈ ⟨M,H⟩JSK(h0, ρ) and (h′, ρ′) ∈
⟨M,H⟩JSK(h0 ⊎ h1, ρ), there is a h′0 such that (h′0, ρ

′
0) ∈ ⟨M,H⟩JSK(h0, ρ) and

h′ = h′0 ⊎ h1.

Proof. The intuition is that from the first premise, we know that statement S
accesses or changes the locations on heap h0. Hence, adding additional locations
to the heap does not affect the execution of the statement, and these additional
locations remain unmodified during the execution (otherwise, if it would change
these locations, then the statement S would lead to a failure when executing it on
the smaller heap h0 that lacks these additional locations).

In fact, the first premise suggests an important concept of pointer programs:
the ‘footprint’ of a program. Let the footprint of a statement S be the set of states
(h, ρ) such that fail ̸∈ ⟨M,H⟩JSK(h, ρ).

We again have program specifications {ϕ} S {ψ}, being a triple that consists
of a precondition ϕ, a program S, and a postcondition ψ. Note that, in Reynolds’
logic, the precondition and postcondition are formulas of separation logic, and
statements are formed according to a pointer program signature. Every program
specification of Hoare’s logic is also a program specification in Reynolds’ logic, since
every statement of a pointer program signature is also a statement of a first-order
program signature and every formula of classical logic is also a formula of separation
logic.

Again we formally define whether a program specification is satisfied, but now
in a spatial machine model. Recall that formulas never denote the improper state
fail. Thus we have the interpretation of program specifications called strong partial
correctness, defined as such:

⟨M,H⟩ |=RL {ϕ} S {ψ} if and only if ⟨M,H⟩JSK(HJϕKMSL) ⊆ HJψKMSL.

Since fail is never in HJψKMSL, this interpretation explicitly states that the machine
never fails when executing program S starting from any state in HJϕKMSL. The
superscript RL stands for Reynolds’ Logic.

Before introducing the proof system for Reynolds’ logic, note that in Hoare’s
logic we distinguish the background theory and program theory. Recall that a
program theory is a set of program specifications (see Section B.4): it is possible
to consider theories to consist of program specifications or formulas, since every
formula in the background theory can be encoded as a program specification over
the skip statement. As such, we directly introduce the following notion of semantic
consequence in Reynolds’ logic, without distinguishing the background theory from
the program theory.

Let Γ be a theory (a set of program specifications or formulas). We write
Γ |=RL {ϕ} S {ψ} to mean ⟨M,H⟩ |=RL {ϕ} S {ψ} for every spatial machine
model ⟨M,H⟩ such that ⟨M,H⟩ |=RL {ϕ′} S′ {ψ′} for each {ϕ′} S′ {ψ′} ∈ Γ. We
then say that the program specification {ϕ} S {ψ} is a semantic consequence of Γ.
For an empty theory, we simply write |=RL {ϕ} S {ψ} to mean that the program
specification is universally valid.

4.3. STANDARD PROOF SYSTEM 95

4.3 Standard proof system
The standard proof system of Reynolds’ logic RL is an extension of Hoare’s logic
HL (see Section B.4). Reynolds’ logic is an extension of Hoare’s logic, so we first
revisit the proof rules of Hoare’s logic.

If we would interpret the proof rules (axioms are proof rules without premises)
of HL under the intended interpretation of RL, being spatial machine models,
do they remain sound? Clearly, if we only consider the instances of the proof
rules where the formulas are restricted to pure formulas in separation logic, i.e.
those that are heap-independent, these proof rules remain sound also under our
new interpretation with respect to spatial machine models. This follows from the
fact that spatial machine models are extensions of logical machine models and as
such have the same conditions as logical machine models: the interpretation of the
basic assignment x := y is the same, and the access and change conditions are also
present.

But in Reynolds’ logic, we want to extend these rules to all formulas of separation
logic. The skip and halt axioms are easily shown sound, and so is the assignment
axiom. The rules concerning complex statements remain sound, since these do not
depend on the interpretation of formulas: their semantics is defined at the level
of states, which abstracts away from the particular logical structure (being either
valuations as in Hoare’s logic, or heaps and valuations in Reynolds’ logic).

What remains to be considered are the so-called adaptation rules.

• The consequence rule (conseq) is sound because

⟨M,A⟩JSK(AJϕ′KMSL) ⊆ AJψ′KMSL

follows from monotonicity of the semantics, and the fact that we have both
AJψ′KMSL ⊆ AJψKMSL and AJϕKMSL ⊆ AJϕ′KMSL.

• In the substitution rule (subst) we make use of the access lemma to take
any computation from {ϕ} S {ψ} and change the initial state with respect
to variable x that is not occurring in S to obtain another computation (the
variable x can then not be overwritten by S). This still works as before.
Further, the value to assign to x is the value of y, which must have the
same value in the initial and final state again due to the change lemma. The
specification then is satisfied by applying the substitution lemma on the
initial and final state. Since the substitution lemma also holds for separation
logic, this works out.

• The ∃-introduction rule (∃-intro) still follows from the access lemma, since
the value of x cannot have any effect on the computation of S nor influence
the denotation of ψ.

• However, the invariance rule (invar) no longer follows from the change lemma.
The problem is that the formula χ can be heap-dependent, whereas change(S)
only tracks variables and not locations on the heap. If S is effect-free, then it
does not change the heap and thus the formula remains invariant. Otherwise,

96 CHAPTER 4. REYNOLDS’ LOGIC

S is effectful and could thus affect (dynamic) parts of the heap on which the
formula χ depends. Concretely, we could take a program [x] := y that modifies
the location in x to become the value of y. However change([x] := y) is empty,
because none of the program variables change value after its execution. If we
take the (valid) program specification {(x ↪→ −)} [x] := y {true} as premise,
and we would take as invariant formula (x ↪→ z), then the resulting pro-
gram specification {(x ↪→ −) ∧ (x ↪→ z)} [x] := y {true ∧ (x ↪→ z)} no longer
is valid! Namely, take y and z to be different values in the initial state. No
variable is changed in the final state when compared to the initial state.
However, it no longer is the case that (x ↪→ z) holds in the final state, since
the location was modified.

Summarizing, in Reynolds’ logic we can have all proof rules of Hoare’s logic, also
extended to instances which have all formulas of separation logic, except for the
invariance rule: the invariance rule only remains sound for pure formulas χ.

Furthermore, in the standard proof system for Reynolds’ we have the following
proof rules [188]. The frame rule is introduced to fill up the gap left by the
invariance rule, allowing one to adapt local specifications to global specifications.
We first introduce RL−, and later give different sets of axioms to describe the
primitive operations of every pointer program.

Definition 4.3.1. The proof system RL− consists of:

• program specifications or formulas of separation logic as objects,

• the smallest deduction relation ⊢RL−
satisfying the conditions:

(skip) ⊢RL− {ϕ} skip {ϕ},

(halt) ⊢RL− {ϕ} halt {false},

(assign) ⊢RL− {ϕ[x := y]} x := y {ϕ},

(block) {ϕ[x⃗ := y⃗]} S {ψ} ⊢RL− {ϕ} begin local x⃗ := y⃗;S end {ψ}
if FV (ψ) ∩ x⃗ = ∅,

(comp) {ϕ} S1 {ψ}, {ψ} S2 {χ} ⊢RL− {ϕ} S1;S2 {χ},

(if) {ϕ ∧ χ} S1 {ψ}, {ϕ ∧ ¬χ} S2 {ψ} ⊢RL− {ϕ} if χ then S1 else S2 fi {ψ},

(while) {ϕ ∧ χ} S {ϕ} ⊢RL− {ϕ} while χ do S od {ϕ ∧ ¬χ},

(conseq) (ϕ′ → ϕ), {ϕ} S {ψ}, (ψ → ψ′) ⊢RL− {ϕ′} S {ψ′},

(subst) {ϕ} S {ψ} ⊢RL− {ϕ[x := y]} S {ψ[x := y]}
for x ̸∈ var(S), y ̸∈ change(S),

(invar) {ϕ} S {ψ} ⊢RL− {ϕ ∧ χ} S {ψ ∧ χ}
for either pure χ or effect-free S, FV (χ) ∩ change(S) = ∅,

(∃-intro) {ϕ} S {ψ} ⊢RL− {∃xϕ} S {ψ} for x ̸∈ var(S) ∪ FV (ψ),

(frame) {ϕ} S {ψ} ⊢RL− {ϕ ∗ χ} S {ψ ∗ χ} if FV (χ) ∩ change(S) = ∅.

4.3. STANDARD PROOF SYSTEM 97

Lemma 4.3.2 (Soundness).

Γ ⊢RL−
{ϕ} S {ψ} implies Γ |=RL {ϕ} S {ψ}.

Proof. By induction on the structure of the deduction. Most cases are already
discussed above, except the frame rule. The soundness of the frame rule goes along
the following lines, see also [230]. From the premise we know that Γ |=RL {ϕ} S {ψ}.
We thus know that the execution of S does not fail in a state that satisfies ϕ.
Due to the first frame lemma we know that, if we extend the initial heap with an
additional part, it does not lead to failure either. From the second frame lemma
we also know that the final state can be split again in the unaffected part of the
heap, in which the additional formula χ still holds as was assumed as part of the
semantics of the separating conjunction in the initial state.

Now consider the set of local axioms [188].

Definition 4.3.3. The set of local axioms is:

(lookup) ⊢ {(y 7→ z)} x := [y] {(x
.
= z) ∧ (y 7→ z)} where x ̸= y and z is fresh,

(lookup’) ⊢ {(x
.
= w) ∧ (x 7→ z)} x := [x] {(x

.
= z) ∧ (w 7→ z)} where z, w are fresh,

(mutation) ⊢ {(x 7→ −)} [x] := y {(x 7→ y)},

(allocation) ⊢ {emp} x := new(y) {(x 7→ y)} where x ̸= y,

(allocation’) ⊢ {(x
.
= z) ∧ emp} x := new(x) {(x 7→ z)} where z is fresh,

(deallocation) ⊢ {(x 7→ −)} delete(x) {emp}.

Lemma 4.3.4. The local axioms are sound with respect to MSL.

By applying the frame rule it becomes possible to extend some of these program
specifications to a global description of the heap.

Next, consider the set of global axioms [188].

Definition 4.3.5. The set of global axioms is:

(lookup) ⊢ {∃z. (y 7→ z) ∗ ϕ[w := x]} x := [y] {∃w. (y[x := w] 7→ x) ∗ ϕ[z := x]}
where z, w, x are distinct, z, w, y are distinct and x ̸∈ FV (ϕ),

(mutation) ⊢ {(x 7→ −) ∗ ϕ} [x] := y {(x 7→ y) ∗ ϕ},

(allocation) ⊢ {ϕ} x := new(y) {∃z. (x 7→ y[x := z]) ∗ ϕ[x := z]} where z is fresh,

(deallocation) ⊢ {(x 7→ −) ∗ ϕ} delete(x) {ϕ}.

Lemma 4.3.6. The global axioms are sound with respect to MSL.

There is also the set of backwards axioms [188], in the sense that these axioms
allow reasoning backwards from a given postcondition.

98 CHAPTER 4. REYNOLDS’ LOGIC

Definition 4.3.7. The set of backwards axioms is:

(assign) ⊢ {ϕ[x := y]} x := y {ϕ},

(lookup) ⊢ {∃z. (y ↪→ z) ∧ ϕ[x := z]} x := [y] {ϕ} where z is fresh,

(mutation) ⊢ {(x 7→ −) ∗ ((x 7→ y) −∗ ϕ)} [x] := y {ϕ},

(allocation) ⊢ {∀z. (z 7→ y) −∗ ϕ[x := z]} x := new(y) {ϕ} where z is fresh,

(deallocation) ⊢ {(x 7→ −) ∗ ϕ} delete(x) {ϕ}.

These backwards axioms also express the weakest precondition:

Lemma 4.3.8. The backwards axioms are sound with respect to MSL, and
describe the weakest precondition with respect to the given primitive operations and
postcondition.

And finally the set of forwards axioms [15], in the sense that these axioms allow
reasoning forwards from a given precondition.

Definition 4.3.9. The set of forwards axioms is:

(assign) ⊢ {ϕ} x := y {∃z. ϕ[x := z] ∧ (y[x := z]
.
= x)} where z is fresh,

(lookup) ⊢ {ϕ ∧ (y ↪→ −)} x := [y] {∃z. χ ∗ ¬(χ −∗ ¬ϕ[x := z])}
where χ = (y[x := z] 7→ x) and z is fresh,

(mutation) ⊢ {ϕ ∧ (x ↪→ −)} [x] := y {(x 7→ y) ∗ ¬((x 7→ −) −∗ ¬ϕ)},

(allocation) ⊢ {ϕ} x := new(y) {∃z. (x 7→ y[x := z]) ∗ ϕ[x := z]},

(deallocation) ⊢ {ϕ ∧ (x ↪→ −)} delete(x) {¬((x 7→ −) −∗ ¬ϕ)}.

Lemma 4.3.10. The forwards axioms are sound with respect to MSL, and
describe the strongest postcondition with respect to the given primitive operations
and precondition.

These forwards axioms also express the strongest postcondition with respect to
the given primitive operations and precondition, but note that we have additional
assumptions in the precondition that ensures absence of failure.

Finally, we observe that we have admissibility of the frame rule for pure pointer
programs in case we take the backwards axioms for the primitive operations. In pure
pointer programs, there are no other operations than the operations of assignment,
lookup, mutation, allocation and deallocation.

Lemma 4.3.11. The frame rule is admissible in the proof system RL− with the
backwards axioms, given that the background theory is maximally consistent.

4.3. STANDARD PROOF SYSTEM 99

Proof. Consider a deduction that makes use of the frame rule. The strategy is to
‘push upward’ the instance of the frame rule to the top of the deduction, i.e. where
there is an axiom applied that is either (skip), (halt), (assign), or one of the pointer
program operations (lookup), (mutation), (allocation), (deallocation). For these
axioms, it can be verified that the conclusion of the frame rule is deducible (from
the empty context). We then analyze the adaptation and structural rules.

For the adaptation rule, we illustrate the proof by showing how to push the
frame rule up the consequence rule. Consider the following deduction in which the
frame rule is applied directly after the consequence rule:

ϕ′ → ϕ
D

{ϕ} S {ψ} ψ → ψ′

{ϕ′} S {ψ′}
{ϕ′ ∗ χ} S {ψ′ ∗ χ}

It is our induction hypothesis that the frame rule is admissible for shorter deductions,
so from deduction D with conclusion {ϕ} S {ψ} we obtain deduction D′ with
conclusion {ϕ ∗ χ} S {ψ ∗ χ}. By then applying the consequence rule we obtain
the following deduction:

ϕ′ ∗ χ→ ϕ ∗ χ
D′

{ϕ ∗ χ} S {ψ ∗ χ} ψ ∗ χ→ ψ′ ∗ χ
{ϕ′ ∗ χ} S {ψ′ ∗ χ}

since we know ϕ′ → ϕ and ψ → ψ′ are in the background theory and the back-
ground theory is maximally consistent, the two remaining premises must be in the
background theory too. The remaining adaptation rules are similar.

For the structural rules, we illustrate how the proof goes by looking at sequential
composition. Consider that we have a deduction in which the frame rule is applied
directly following the sequential composition:

D1

{ϕ} S1 {ψ}
D2

{ψ} S2 {χ}
{ϕ} S1;S2 {χ}

{ϕ ∗ ξ} S1;S2 {χ ∗ ξ}

By induction hypothesis, we obtain from D1 and D2 two deductions D′
1 and D′

2 with
respectively conclusions {ϕ ∗ ξ} S1 {ψ ∗ ξ} and {ψ ∗ ξ} S2 {χ ∗ ξ}. Note that the
changed variables of the smaller programs are contained in the changed variables of
the sequential composition, so the frame rule would be applicable. We then obtain
the following deduction:

D′
1

{ϕ ∗ ξ} S1 {ψ ∗ ξ}
D′

2

{ψ ∗ ξ} S2 {χ ∗ ξ}
{ϕ ∗ ξ} S1;S2 {χ ∗ ξ}

which finishes this case. The remaining structural cases are similar. For the while
and if rules, one also needs the equivalence (ϕ ∧ χ) ∗ ψ ≡ (ϕ ∗ ψ) ∧ χ, which holds
since χ is a pure quantifier-free formula.

100 CHAPTER 4. REYNOLDS’ LOGIC

Note that it is an open problem whether the proof above may be adapted to
the setting of recursive procedures, with or without parameters (see also the Ph.D.
thesis of Al Ameen [6]). Although intuitively we can ‘push’ the frame rule through
the assumptions about each procedure call, this may result in an infinite amount
of assumptions obtained that way and it is not obvious whether this infinite set
of assumptions is compact, in the sense that all consequences can also be derived
from a finite subset of these infinite assumptions without using the frame rule.

4.4 Dynamic separation logic

We have now seen different axiomatizations of the primitive operations of all
pointer programs. In particular, it can be observed that in the backwards and
forwards sets of axioms, we do not systematically analyze the structure of the given
postcondition or precondition. For example, in the mutation axiom of the backwards
set, the given postcondition is simply verbatim part of the weakest precondition.
Furthermore, the axioms for (mutation), (allocation) and (deallocation) all increase
the complexity of the generated formula as measured by their number of nested
separating connectives. Thus, even starting with a first-order formula, the resulting
generated formula necessarily is a formula of separation logic. This is contrary to
how, e.g., the (assign) axioms work in backwards and forwards, and the (lookup)
axiom works in backwards, which perform a substitution to perform a structural
analysis of the given postcondition, and do not introduce additional separating
connectives.

This raises the questions: are there alternative ways to axiomatize these oper-
ations? In particular, is there a way to axiomatize (mutation), (allocation) and
(deallocation) so that the structure of the given postcondition is analyzed, akin
to a substitution operator? Can we give weakest preconditions and strongest
postconditions without increasing the nesting depth of separating connectives?

To answer these questions, we introduce in our assertion language an additional
program modality for each statement S, which has highest binding priority, denoted
as [S]p. This extended language is called dynamic separation logic (DSL), and as
such the syntax of dynamic separation logic becomes:

p, q ::= . . . | [S]p

We shall use the Roman letters p, q to stand for formulas of DSL, whereas we use
the Greek letters ϕ, ψ to stand for formulas of separation logic. Note that in case
of the assignment x := y the program modality [x := y]ϕ is different from the
(capture-avoiding) substitution operator ϕ[x := y], since the former is a formula
of our extended language, whereas the latter is a meta-operation defined on the
separation logic formula ϕ.

We also extend the semantics of separation logic to interpret the additional
program modalities. The intended semantics of dynamic separation logic extends
the semantics of separation logic by interpreting the modality [S]p as expressing
the weakest precondition of statement S with postcondition p:

4.4. DYNAMIC SEPARATION LOGIC 101

• ...

• ⟨M,H⟩, h, ρ |=DSL [S]p iff (S, h, ρ) −̸↠ fail and ⟨M,H⟩, h′, ρ′ |= p for all
h′, s′ such that (S, h, ρ) −↠ (✓, h′, ρ′).

Note that to give semantics to formulas of dynamic separation logic, we need to
interpret the formulas with respect to a fixed spatial machine model ⟨M,H⟩, which
itself depends on a memory structure H = (A, H), with an underlying structure A
and memory model H, which is the same memory structure with which we evaluate
the formula of dynamic separation logic. This also explains the need for the effect
condition on spatial machine models, since we need the resulting heap h′ in every
final configuration to be in the set of heaps H. Since h′ is a finite distance from h,
and we know that memory models are closed under the operations of heap update
and heap clear, we know that h′ must be in the memory model too.

Extending Reynolds’ logic to also include formulas of dynamic separation logic
in its program specifications, it is not difficult to see that we have that

|= {[S]p} S {p}

holds, and |= {p} S {q} implies |=DSL p→ [S]q, that is, [S]q indeed expresses the
weakest precondition of statement S and postcondition q.

In dynamic logic axioms are introduced to simplify formulas in which modalities
occur. We have the following basic equivalences E1-3 for assignments.

Lemma 4.4.1 (Assignment). Let the statement S be the assignment x := y.

[S]false ≡ false (E1)
[S](p ◦ q) ≡ [S]p ◦ [S]q (E2)
[S](∀zp) ≡ ∀z([S]p) (E3)

[S]b ≡ b[S] (E4)

In E2 we have that ◦ stands for the binary connectives →, ∗, −∗.
In E3 we assume that z is not equal to x or y.
In E4 we have that b is either (z1

.
= z2), C(z1, . . . , zn), or (z1 ↪→ z2).

The proofs of these equivalences for [x := y]p proceed by a straightforward
induction on the structure of p. The base cases of logical equality, predicates, and
the weak ‘points to’ construct are handled by a straightforward extension of the
substitution lemma of separation logic. In fact, for assignments, by E4 as base case
and E1-3 for the inductive cases, we have for any formula of separation logic ϕ,

[x := y]ϕ ≡ ϕ[x := y],

where the latter is the (capture-avoiding) substitution operator. The reason we
present the axioms E1-4 in the way it is done above, is because we want to analyze
what happens when we take different statements in the place of S: do these axioms
then still hold?

102 CHAPTER 4. REYNOLDS’ LOGIC

The above equivalences E1-3 do not hold in general for the other primitive
operations of pointer programs. Let x, y be distinct variables. For example,

[x := [y]]false ≡ ¬(y ↪→ −),

showing that lookup fails E1. For allocation, we do have

[x := new(y)]false ≡ false,

but [x := new(y)](x ̸ .= y) is not equivalent to ¬([x := new(y)](x
.
= y)), since

[x := new(y)](x ̸ .= y) ≡ (y ↪→ −),

because to end up in a final state where x ̸ .= y we need to have that y is already
allocated in the initial state, whereas

[x := new(y)](x
.
= y) ≡ ∀z. ((z ̸↪→ −) → z

.
= y),

which forces the only free location to be y. But then it is also the case that
¬([x := new(y)](x

.
= y)) expresses that (z ̸↪→ −) for some z ̸ .= y. So this shows

allocation fails E2. Similar examples exists for the other primitive operations.
We now introduce new primitive operations, separate from pointer programs,

called pseudo-operations. These pseudo-operations are not part of pointer programs,
but we can give them semantics in the usual way through an operationalization.
We have the pseudo-operation

⟨x⟩ := e

called heap update, and
⟨x⟩ := ⊥

called heap clear. These pseudo-operations could be described by the following
small-step transitions:

(⟨x⟩ := y, h, ρ) −→ (✓, h[ρ(x) := ρ(y)], ρ)

(⟨x⟩ := ⊥, h, ρ) −→ (✓, h[ρ(x) :=⊥], ρ)

In contrast to the mutation and deallocation operations, these pseudo-operations
do not require that ρ(x) ∈ dom(h), e.g., if ρ(x) ̸∈ dom(h) then the heap update
⟨x⟩ := y extends the domain of the heap, whereas mutation [x] := y leads to failure
in that case.

It is now crucial to observe that these are pseudo-operations, precisely because
they fail the frame condition. As such, these operations can never occur in a spatial
machine model, which requires the frame condition to hold for all operations.
Before, we could establish the footprint of a pointer program simply by running a
program on a small heap: if the program would lead to failure, then the location
that was missing from the initial heap necessarily is in the footprint. However,
these pseudo-operations never fail. Hence these cannot be used to determine the
footprint of a program.

4.4. DYNAMIC SEPARATION LOGIC 103

That the pseudo-operations do not satisfy the frame condition can best be seen
by considering why the frame rule (in a hypothetical situation where we let the
pseudo-operations in the place of a statement) would become unsound. Clearly, we
have that

|= {emp} ⟨x⟩ := y {(x 7→ y)}
holds. However, the conclusion of the frame rule fails:

̸|= {emp ∗ (x 7→ y)} ⟨x⟩ := y {(x 7→ y) ∗ (x 7→ y)}

because the initial state is satisfiable (there surely is a heap in which only the
location x is allocated and has value y), and the execution successfully terminates
(the pseudo-operations never lead to failure). But, the final state does not satisfy
(x 7→ y) ∗ (x 7→ y) because that formula is equivalent to false.

Strictly speaking, we thus consider not only the modality [S]ϕ where S is given
semantics by a spatial machine model, but also consider modalities over these two
pseudo-operations: [⟨x⟩ := y]ϕ and [⟨x⟩ := ⊥]ϕ.

The above equivalences E1-3, with E2 restricted to the (standard) logical
connectives, do hold for the pseudo-operations.

In the following lemma we give an axiomatization in dynamic separation logic
of the primitive operations in terms of simple assignments and these two pseudo-
operations. For comparison we also give the standard backwards axiomatization
[188, 81, 15].

Lemma 4.4.2 (Axioms basic instructions).

[x := [e]]p ≡ ∃y((e ↪→ y) ∧ [x := y]p), (E5)

[[x] := e]p ≡
{

(x ↪→ −) ∧ [⟨x⟩ := e]p
(x 7→ −) ∗ ((x 7→ e) −∗ p) (E6)

[x := new(e)]p ≡
{

∀x((x ̸↪→ −) → [⟨x⟩ := e]p)
∀x((x 7→ e) −∗ p) (E7)

[delete(x)]p ≡
{

(x ↪→ −) ∧ [⟨x⟩ := ⊥]p
(x 7→ −) ∗ p (E8)

We require in the axiom for x := new(e) that x does not appear in e, for technical
convenience.

In the sequel E5-8 refer to the corresponding dynamic separation logic equiv-
alences. The proofs of these equivalences are straightforward (consist simply of
expanding the semantics of the involved modalities) and therefore omitted.

We have the following separation logic axiomatization of the heap update and
heap clear pseudo-operations.

[⟨x⟩ := e]p ≡ ((x 7→ −) ∗ ((x 7→ e) −∗ p)) ∨ ((x ↪̸→ −) ∧ ((x 7→ e) −∗ p))
[⟨x⟩ := ⊥]p ≡ ((x 7→ −) ∗ p) ∨ ((x ↪̸→ −) ∧ p)

This axiomatization thus requires a case distinction between whether or not x is
allocated.

104 CHAPTER 4. REYNOLDS’ LOGIC

Note that, letting p be any formula in separation logic ϕ, we have that [x := y]ϕ
in E5 reduces to ϕ[x := y] by E1-4. As such, it is possible to eliminate the
modality, in the case of the assignment and lookup instructions.

We now want to eliminate the modalities for the heap update and heap clear
instructions compositionally in terms of p, because such an elimination would also
allow us to eliminate the modalities of the other instructions. What thus remains
for a complete axiomatization is a characterization of [S]b, [S](e ↪→ e′), [S](p ∗ q),
and [S](p −∗ q), where S denotes one of the two pseudo-instructions. Lemma 4.4.3
provides an axiomatization in DSL of a heap update.

Lemma 4.4.3 (Heap update). We have the following equivalences for the heap
update modality.

[⟨x⟩ := e]b ≡ b, (E9)
[⟨x⟩ := e](e′ ↪→ e′′) ≡ (x = e′ ∧ e′′ = e) ∨ (x ̸= e′ ∧ e′ ↪→ e′′), (E10)

[⟨x⟩ := e](p ∗ q) ≡ ([⟨x⟩ := e]p ∗ q′) ∨ (p′ ∗ [⟨x⟩ := e]q), (E11)
[⟨x⟩ := e](p −∗ q) ≡ p′ −∗ [⟨x⟩ := e]q, (E12)

where p′ abbreviates p ∧ (x ̸↪→ −) and, similarly, q′ abbreviates q ∧ (x ̸↪→ −).

These equivalences we can informally explain as follows. Since the heap update
⟨x⟩ := e does not affect the store, and the evaluation of a Boolean condition b only
depends on the store, we have that ([⟨x⟩ := e]b) ≡ b.

Predicting whether (e′ ↪→ e′′) holds after ⟨x⟩ := e, we only need to make a
distinction between whether x and e′ are aliases, that is, whether they denote the
same location, which is simply expressed by x = e′. If x = e′ then e′′ = e should
hold, otherwise (e′ ↪→ e′′) (note again, that ⟨x⟩ := e does not affect the values of
the expressions e, e′ and e′′). As a basic example, we compute

[⟨x⟩ := e](y ↪→ −) ≡ (definition y ↪→ −)
[⟨x⟩ := e]∃z(y ↪→ z) ≡ (E3)
∃z[⟨x⟩ := e](y ↪→ z) ≡ (E10)
∃z((y = x ∧ e = z) ∨ (y ̸= x ∧ (y ↪→ z))) ≡ (semantics SL)
y ̸= x→ (y ↪→ −)

We use this derived equivalence in the following example:

[⟨x⟩ := e](y 7→ −) ≡ (definition y 7→ −)
[⟨x⟩ := e]((y ↪→ −) ∧ ∀z((z ↪→ −) → z = y)) ≡ (E2, E3, E9)
[⟨x⟩ := e](y ↪→ −) ∧ ∀z([⟨x⟩ := e](z ↪→ −) → z = y) ≡ (see above)
(y ̸= x→ (y ↪→ −)) ∧ ∀z((z ̸= x→ (z ↪→ −)) → z = y) ≡ (semantics SL)
y = x ∧ (emp ∨ (x 7→ −))

Predicting whether (p ∗ q) holds after the heap update ⟨x⟩ := e, we need
to distinguish between whether p or q holds for the sub-heap that contains the
(updated) location x. Since we do not assume that x is already allocated, we

4.4. DYNAMIC SEPARATION LOGIC 105

instead distinguish between whether p or q holds initially for the sub-heap that
does not contain the updated location x. As a simple example, we compute

[⟨x⟩ := e](true ∗ (x 7→ −)) ≡ (E9,E11)
(true ∗ ((x 7→ −) ∧ (x ̸↪→ −))) ∨ ((x ̸↪→ −) ∗ [⟨x⟩ := e](x 7→ −) ≡ (see above)
(true ∗ ((x 7→ −) ∧ (x ̸↪→ −))) ∨ ((x ̸↪→ −) ∗ (emp ∨ (x 7→ −))) ≡ (semantics SL)
(true ∗ false) ∨ ((x ̸↪→ −) ∗ (emp ∨ (x 7→ −))) ≡ (semantics SL)
true

Note that this coincides with the above calculation of [⟨x⟩ := e](y ↪→ −), which
also reduces to true, instantiating y by x.

The semantics of (p −∗ q) after the heap update ⟨x⟩ := e involves universal
quantification over all disjoint heaps that do not contain x (because after the
heap update x is allocated). Therefore we simply add the condition that x is not
allocated to p, and apply the heap update to q. As a very basic example, we
compute

[⟨x⟩ := 0]((y ↪→ 1) −∗ (y ↪→ 1)) ≡ (E12)
((y 7→ 1) ∧ (x ̸↪→ −)) −∗ [⟨x⟩ := 0](y ↪→ 1)) ≡ (E10)
((y 7→ 1) ∧ (x ̸↪→ −)) −∗ ((y = x ∧ 0 = 1) ∨ (y ̸= x ∧ y ↪→ 1)) ≡ (semantics SL)
true

Note that (y ↪→ 1) −∗ (y ↪→ 1) ≡ true and [⟨x⟩ := 0]true ≡ true.

Proof of Lemma 4.4.3.

E9 h, s |= [⟨x⟩ := e]b
iff (semantics heap update modality)
h[s(x) := s(e)], s |= b
iff (b does not depend on the heap)
h, s |= b

E10 h, s |= [⟨x⟩ := e](e′ ↪→ e′′)
iff (semantics heap update modality)
h[s(x) := s(e)], s |= e′ ↪→ e′′

iff (semantics points-to)
h[s(x) := s(e)](s(e′)) = s(e′′)
iff (definition h[s(x) := s(e)])
if s(x) = s(e′) then s(e) = s(e′′) else h(s(e′)) = s(e′′)
iff (semantics assertions)
h, s |= (x = e′ ∧ e′′ = e) ∨ (x ̸= e′ ∧ e′ ↪→ e′′)

E11 h, s |= [⟨x⟩ := e](p ∗ q)
iff (semantics heap update modality)
h[s(x) := s(e)], s |= p ∗ q.
From here we proceed as follows. By the semantics of separating conjunction,
there exist h1 and h2 such that h[s(x) := s(e)] = h1 ⊎ h2, h1, s |= p, and

106 CHAPTER 4. REYNOLDS’ LOGIC

h2, s |= q. Let s(x) ∈ dom(h1) (the other case runs similarly). So h[s(x) :=
s(e)] = h1 ⊎ h2 implies h1(s(x)) = s(e) and h = h1[s(x) := h(x)] ⊎ h2, By
the semantics of the heap update modality, h1(s(x)) = s(e) and h1, s |= p
implies h1[s(x) := h(x)], s |= [⟨x⟩ := e]p. Since s(x) ̸∈ dom(h2), we have
h2, s |= q ∧ x ̸↪→ −. By the semantics of separation conjunction we conclude
that h, s |= [⟨x⟩ := e]p ∗ q′ (q′ denotes q ∧ x ̸↪→ −).

In the other direction, from h, s |= [⟨x⟩ := e]p ∗ q′ (the other case runs
similarly) we derive that there exist h1 and h2 such that h = h1 ⊎ h2, h1, s |=
[⟨x⟩ := e]p and h2, s |= q′. By the semantics of the heap update modality
it follows that h1[s(x) := s(e)], s |= p. Since s(x) ̸∈ dom(h2), we have that
h[s(x) := s(e)] = h1[s(x) := s(e)] ⊎ h2, and so h[s(x) := s(e)], s |= p ∗ q, that
is, h, s |= [⟨x⟩ := e](p ∗ q).

E12 h, s |= [⟨x⟩ := e](p −∗ q)
iff (semantics of heap update modality)
h[s(x) := s(e)], s |= p −∗ q
iff (semantics separating implication)
for every h′ disjoint from h[s(x) := s(e)]: if h′, s |= p then h[s(x) := s(e)] ⊎
h′, s |= q
iff (since s(x) ̸∈ dom(h′))
for every h′ disjoint from h: if h′, s |= p ∧ x ̸↪→ − then (h ⊎ h′)[s(x) :=
s(e)], s |= q
iff (semantics of heap update modality)
for every h′ disjoint from h: if h′, s |= p∧x ̸↪→ − then h⊎h′, s |= [s(x) := s(e)]q
iff (semantics separating implication)
h, s |= (p ∧ x ̸↪→ −) −∗ [⟨x⟩ := e]q. □

The equivalences for the heap clear modality in the following lemma can be
informally explained as follows. Since ⟨x⟩ := ⊥ does not affect the store, and
the evaluation of a Boolean condition b only depends on the store, we have that
b[⟨x⟩ := ⊥] = b. For e ↪→ e′ to hold after executing ⟨x⟩ := ⊥, we must initially
have that x ̸= e and e ↪→ e′. As a simple example, we have that ∀y, z(y ̸↪→ z)
characterizes the empty heap. It follows that [⟨x⟩ := ⊥](∀y, z(y ̸↪→ z)) is equivalent
to ∀y, z(¬(y ̸= x ∧ y ↪→ z)). The latter first-order formula is equivalent to
∀y, z(y = x ∨ y ̸↪→ z). This assertion thus states that the domain consists at most
of the location x, which indeed ensures that after ⟨x⟩ := ⊥ the heap is empty. To
ensure that p ∗ q holds after clearing x it suffices to show that the initial heap can
be split such that both p and q hold in their respective sub-heaps with x cleared.
The semantics of p −∗ q after clearing x involves universal quantification over all
disjoint heaps that do may contain x, whereas before executing ⟨x⟩ := ⊥ it involves
universal quantification over all disjoint heaps that do not contain x, in case x is
allocated initially. To formalize in the initial configuration universal quantification
over all disjoint heaps we distinguish between all disjoint heaps that do not contain
x and simulate all disjoint heaps that contain x by interpreting both p and q in
p −∗ q in the context of heap updates ⟨x⟩ := y with arbitrary values y for the
location x.

4.4. DYNAMIC SEPARATION LOGIC 107

As a very basic example, consider [⟨x⟩ := ⊥]((x ↪→ 0) −∗ (x ↪→ 0)), which should
be equivalent to true. The left conjunct ((x ↪→ 0) ∧ (x ̸↪→ −)) −∗ [⟨x⟩ := ⊥](x ↪→
0)) of the resulting formula after applying E16 is equivalent to true (because
(x ↪→ 0) ∧ (x ̸↪→ −) is equivalent to false). We compute the second conjunct (in
the application of E10 we omitted some trivial reasoning steps):

∀y([⟨x⟩ := y](x ↪→ 0) −∗ [⟨x⟩ := y](x ↪→ 0) ≡ (E10)
∀y(y = 0 −∗ y = 0) ≡ (semantics SL)
true

Lemma 4.4.4 (Heap clear). We have the following equivalences for the heap clear
modality.

[⟨x⟩ := ⊥]b ≡ b, (E13)
[⟨x⟩ := ⊥](e ↪→ e′) ≡ (x ̸= e) ∧ (e ↪→ e′), (E14)

[⟨x⟩ := ⊥](p ∗ q) ≡ [⟨x⟩ := ⊥]p ∗ [⟨x⟩ := ⊥]q, (E15)

[⟨x⟩ := ⊥](p −∗ q) ≡ ((p ∧ x ̸↪→ −) −∗ [⟨x⟩ := ⊥]q) ∧
∀y([⟨x⟩ := y]p −∗ [⟨x⟩ := y]q),

(E16)

where y is fresh.

Proof. Here we go.

E13 [⟨x⟩ := ⊥]b ≡ b. As above, it suffices to observe that the evaluation of b does
not depend on the heap.

E14 h, s |= [⟨x⟩ := ⊥](e ↪→ e′)
iff (semantics heap clear modality)
h[⟨s(x)⟩ := ⊥], s |= e ↪→ e′

iff (semantics points-to)
s(e) ∈ dom(h[⟨s(x)⟩ := ⊥]) and h[⟨s(x)⟩ := ⊥](s(e)) = h(s(e)) = s(e′)
iff (semantics assertions)
h, s |= x ̸= e ∧ e ↪→ e′

E15 h, s |= [⟨x⟩ := ⊥](p ∗ q)
iff (semantics heap clear modality)
h[⟨s(x)⟩ := ⊥], s |= p ∗ q
iff (semantics separating conjunction)
h1, s |= p and h2, s |= q, for some h1, h2 such that h[⟨s(x)⟩ := ⊥] = h1 ⊎ h2
iff (semantics heap clear modality)
h1, s |= [⟨x⟩ := ⊥]p and h2, s |= [⟨x⟩ := ⊥]q, for some h1, h2 such that
h = h1 ⊎ h2.
Note: h = h1 ⊎ h2 implies h[⟨s(x)⟩ := ⊥] = h1[⟨s(x)⟩ := ⊥] ⊎ h2[⟨s(x)⟩ := ⊥],
and, conversely, h[⟨s(x)⟩ := ⊥] = h1 ⊎ h2 implies there exists h′1, h′2 such that
h = h′1 ⊎ h′2 and h1 = h′1[⟨s(x)⟩ := ⊥] and h2 = h′2[⟨s(x)⟩ := ⊥].

108 CHAPTER 4. REYNOLDS’ LOGIC

E16 h, s |= [⟨x⟩ := ⊥](p −∗ q)
iff (semantics heap clear modality)
h[s(x) :=⊥], s |= p −∗ q.
From here we proceed as follows. First we show that h, s |= ((p ∧ x ̸↪→ −) −∗
[⟨x⟩ := ⊥]q) and h, s |= ∀y([⟨x⟩ := y]p −∗ [⟨x⟩ := y]q) implies h[s(x) :=⊥
], s |= p −∗ q. Let h′ be disjoint from h[s(x) :=⊥] and h′, s |= p. We have to
show that h[s(x) :=⊥] ⊎ h′, s |= q. We distinguish the following two cases.

• First, let s(x) ∈ dom(h′). We then introduce s′ = s[y := h′(s(x))]. We
have h′, s′ |= p (since y does not occur in p), so it follows by the semantics
of the heap update modality that h′[s(x) := ⊥], s′ |= [⟨x⟩ := y]p. Since
h′[s(x) := ⊥] and h are disjoint (which clearly follows from that h′ and
h[s(x) := ⊥] are disjoint), and since h, s′ |= [⟨x⟩ := y]p −∗ [⟨x⟩ := y]q,
we have that h ⊎ (h′[s(x) := ⊥]), s′ |= [⟨x⟩ := y]q. Applying again
the semantics of the heap update modality, we obtain (h ⊎ (h′[s(x) :=
⊥]))[s(x) := s′(y)], s′ |= q. We then can conclude this case observing
that y does not occur in q and that h[s(x) := ⊥] ⊎ h′ = (h ⊎ (h′[s(x) :=
⊥]))[s(x) := s′(y)].

• Next, let s(x) ̸∈ dom(h′). So h′ and h are disjoint, and thus (since
h, s |= (p ∧ x ̸↪→ −) −∗ [⟨x⟩ := ⊥]q) we have h ⊎ h′, s |= [⟨x⟩ := ⊥]q.
From which we derive (h ⊎ h′)[s(x) := ⊥], s |= q by the induction
hypothesis. We then can conclude this case by the observation that
h[s(x) := ⊥] ⊎ h′ = (h ⊎ h′)[s(x) := ⊥].

Conversely, assuming h[s(x) := ⊥], s |= p −∗ q, we first show that h, s |=
(p ∧ x ̸↪→ −) −∗ [⟨x⟩ := ⊥]q and then h, s |= ∀y([⟨x⟩ := y]p −∗ [⟨x⟩ := y]q).

• Let h′ be disjoint from h and h′, s |= p ∧ x ̸↪→ −. We have to show
that h ⊎ h′, s |= [⟨x⟩ := ⊥]q, that is, (h ⊎ h′)[s(x) :=⊥], s |= q (by the
semantics of the heap clear update). Clearly, h[s(x) := ⊥] and h′ are
disjoint, and so h[s(x) := ⊥] ⊎ h′, s |= q follows from our assumption.
We then can conclude this case by the observation that (h ⊎ h′)[s(x) :=
⊥] = h[s(x) := ⊥] ⊎ h′, because s(x) ̸∈ dom(h′).

• Let h′ be disjoint from h and s′ = s[y := n], for some n such that
h′, s′ |= [⟨x⟩ := y]p. We have to show that h ⊎ h′, s′ |= [⟨x⟩ := y]q. By
the semantics of the heap update modality it follows that h′[s(x) :=
n], s′ |= p, that is, h′[s(x) := n], s |= p (since y does not occur in p).
Since h′[s(x) := n] and h[s(x) := ⊥] are disjoint, we derive from the
assumption h[s(x) := ⊥], s |= p −∗ q that h[s(x) := ⊥] ⊎ h′[s(x) :=
n], s |= q. Again by the semantics of the heap update modality we
have that h ⊎ h′, s′ |= [⟨x⟩ := y]q iff (h ⊎ h′)[s(x) := n], s′ |= q (that
is, (h ⊎ h′)[s(x) := n], s |= q, because y does not occur in q). We then
can conclude this case by the observation that (h ⊎ h′)[s(x) := n] =
h[s(x) := ⊥] ⊎ h′[s(x) := n].

We denote by E the rewrite system obtained from the equivalences E1-16 by
orienting these equivalences from left to right, e.g., equivalence E1 is turned into

4.4. DYNAMIC SEPARATION LOGIC 109

a rewrite rule [S]false ⇒ false. The following theorem states that the rewrite
system E is complete, that is, confluent and strongly normalizing. Its proof is
straightforward (using standard techniques) and therefore omitted.

Theorem 4.4.5 (Completeness of E).

• Normal form. Every standard formula of separation logic is in normal form
(which means that it cannot be reduced by the rewrite system E).

• Local confluence. For any two reductions p⇒ q1 and p⇒ q2 (p a formula
of DSL) there exists a DSL formula q such that q1 ⇒ q and q2 ⇒ q.

• Termination. There does not exist an infinite chain of reductions p1 ⇒
p2 ⇒ p3 ⇒ · · · .

We now show an example of the interplay between the modalities for heap
update and heap clear. We want to derive

{∀x((x ̸↪→ −) → p)} x := new(0);delete(x) {p}

where statement x := new(0);delete(x) simulates the so-called random assignment
[107]: the program terminates with a value of x that is chosen non-deterministically.
First we apply the axiom E8 for de-allocation to obtain

{(x ↪→ −) ∧ [⟨x⟩ := ⊥]p} delete(x) {p}.

Next, we apply the axiom E8 for allocation to obtain

{∀x((x ↪̸→ −) → [⟨x⟩ := 0]((x ↪→ −) ∧ [⟨x⟩ := ⊥]p))}
x := new(0)

{(x ↪→ −) ∧ [⟨x⟩ := ⊥]p}.

Applying E10 (after pushing the heap update modality inside), followed by some
basic first-order reasoning, we can reduce [⟨x⟩ := 0](∃y(x ↪→ y)) to true. So we
obtain

{∀x((x ↪̸→ −) → [⟨x⟩ := 0][⟨x⟩ := ⊥]p)}
x := new(0)

{(x ↪→ −) ∧ [⟨x⟩ := ⊥]p}.
In order to proceed we formalize the interplay between the modalities for heap
update and heap clear by the following general equivalence:

[⟨x⟩ := e][⟨x⟩ := ⊥]p ≡ [⟨x⟩ := ⊥]p

We then complete the proof by applying the sequential composition rule and
consequence rule, using the above equivalence and the following axiomatization of
the heap clear modality:

(x ̸↪→ −) ∧ [⟨x⟩ := ⊥]p ≡ (x ̸↪→ −) ∧ p

Now it is possible to define meta-operations on formulas of separation logic ϕ.

110 CHAPTER 4. REYNOLDS’ LOGIC

Definition 4.4.6. We define the meta-operations ϕ[⟨x⟩ := y] and ϕ[⟨x⟩ := ⊥]:

ϕ[⟨x⟩ := y] = [⟨x⟩ := y]ϕ,

and
ϕ[⟨x⟩ := ⊥] = [⟨x⟩ := ⊥]ϕ.

Note that due to Theorem 4.4.5, we can completely eliminate the modality
when it is applied to a formula of separation logic. Hence the resulting formulas are
again formulas of separation logic, and no longer in the extended language of DSL.

The above axiomatization can be extended in the standard manner to a program
logic for sequential while programs, see [107], which does not require the frame rule,
nor any other adaptation rule besides the consequence rule. For recursive programs
however one does need more adaptation rules: a further discussion about the use
of the frame rule in a relative completeness proof for recursive pointer programs is
outside the scope of this thesis, and left for future work.

4.5 Alternative axiomatizations

Based on the heap update and heap clear pseudo-instructions of the previous section,
we can give two alternative axiomatizations of Reynolds’ logic. It is remarkable
that these alternative axiomatizations can be proven to be also the weakest precon-
ditions, respectively strongest postconditions, of the primitive operations of pointer
programs.

Definition 4.5.1. The set of alt-backwards axioms is:

(assign) ⊢ {p[x := y]} x := y {p},

(lookup) ⊢ {∃z((y ↪→ z) ∧ ϕ[x := z])} x := [y] {ϕ} where z is fresh,

(mutation) ⊢ {(x ↪→ −) ∧ ϕ[⟨x⟩ := y]} [x] := y {ϕ},

(allocation) ⊢ {∀x((x ̸↪→ −) → ϕ[⟨x⟩ := y])} x := new(y) {ϕ} where x ̸= y,

(deallocation) ⊢ {(x ↪→ −) ∧ ϕ[⟨x⟩ := ⊥]} delete(x) {ϕ}.

These alternative backwards axioms also express the weakest precondition:

Lemma 4.5.2. The alt-backwards axioms are sound with respect to MSL, and
describe the weakest precondition with respect to the given primitive operations and
postcondition.

We can also give the set of alt-forwards axioms, in the sense that these axioms
allow reasoning forwards from a given precondition.

4.5. ALTERNATIVE AXIOMATIZATIONS 111

Definition 4.5.3. The set of alt-forwards axioms is:

(assign) ⊢ {ϕ} x := y {∃z(ϕ[x := z] ∧ y[x := z] = x)},

(lookup) ⊢ {(y ↪→ −) ∧ ϕ} x := [y] {∃z(ϕ[x := z] ∧ y[x := z] ↪→ x)},

(mutation) ⊢ {(x ↪→ −) ∧ ϕ} [x] := y {(∃z(ϕ[⟨x⟩ := z])) ∧ (x ↪→ y)},

(allocation) ⊢ {ϕ} x := new(y) {(∃z(ϕ[x := z]))[⟨x⟩ := ⊥] ∧ (x ↪→ y)},

(deallocation) ⊢ {(x ↪→ −) ∧ ϕ} delete(x) {∃z(ϕ[⟨x⟩ := z]) ∧ (x ̸↪→ −)},

where z is fresh.

Lemma 4.5.4. The alt-forwards axioms are sound with respect to MSL, and
describe the strongest postcondition with respect to the given primitive operations
and precondition.

Another application of the modality for the heap update and heap clear pseudo-
instructions is that we are able to prove the completeness of the local axioms of
Reynolds’ logic and the frame rule, without employing the separating implication
as the invariant formula.

Theorem 4.5.5 (Completeness local axioms). For any primitive pointer operation
S, if |= {p} S {q} then {ϕ} S {ψ} is derivable from the local axioms and the frame
rule, the consequence rule, and the invariance rule for basic assignment and look-up.

Proof. Let |= {ϕ} S {ψ}.

Basic assignment By the invariance rule for basic assignments, we first derive

{true ∧ ∃x(ϕ)} x := e {x = e ∧ ∃x(ϕ)}

Clearly, ϕ implies ∃x(ϕ). Let h, s |= x = e, that is, s(x) = s(e), and h, s[x :=
n] |= ϕ, for some n. From the assumption |= {ϕ} x := e {ψ} we then derive
h, s[x := s[x := n](e)] |= ψ, that is, h, s |= ψ (since s[x := n](e) = s(e) = s(x)).

Look-up By the restricted invariance rule, we first derive

{∃x(ϕ) ∧ (e ↪→ −)} x := [e] {∃x(ϕ) ∧ (e ↪→ x)}

Since |= {ϕ} x := [e] {ψ}, we have that ϕ implies e ↪→ −, and so ϕ implies ∃x(ϕ) ∧
(e ↪→ −). On the other hand, let h(s(e)) = s(x) and h, s′ |= ϕ, where s′ = s[x := n],
for some n. From the assumption |= {ϕ} x := [e] {ψ} we then derive h, s[x :=
h(s′(e))] |= ψ, that is, h, s |= ψ (since x does not occur in e and h(s(e)) = s(x), we
have that s[x := h(s′(e))] = s[x := h(s(e))] = s).

112 CHAPTER 4. REYNOLDS’ LOGIC

Mutation Let ϕ′ denote ∃y(ϕ[⟨x⟩ := y]). By the frame rule, we first derive

{(x 7→ −) ∗ ϕ′} [x] := e {(x 7→ e) ∗ ϕ′}

Let h, s |= ϕ. We show that h, s |= (x 7→ −) ∗ ϕ′: Since |= {ϕ} [x] := e {ψ}
we have that s(x) ∈ dom(h). So we can introduce the split h = h1 ⊎ h2 such
that h1, s |= x 7→ − and h2 = h[s(x) :=⊥]. By the above substitution lemma
it then suffices to observe that h2, s[y := h(s(x))] |= ϕ[⟨x⟩ := y] if and only if
h2[s(x) := h(s(x))], s |= ϕ (y does not appear in ϕ), that is, h, s |= ϕ. On the
other hand, we have that (x 7→ e) ∗ ϕ′ implies ψ: Let h, s |= (x 7→ e) ∗ ϕ′. So
there exists a split h = h1 ⊎ h2 such that h1, s |= x 7→ e and h2, s |= ϕ′. Let n be
such that h2, s[y := n] |= ϕ[[x] := y]. By the above substitution lemma we have
that h2, s[y := n] |= ϕ[⟨x⟩ := y] if and only if h2[s(x) := n], s |= ϕ (y does not
appear in ϕ). Since |= {ϕ} [x] := e {ψ} it then follows that h2[s(x) := s(e)], s |= ψ,
that is, h, s |= ψ (note that h = h2[s(x) := s(e)] because h(s(x)) = s(e) and
h2 = h[s(x) := ⊥]).

Allocation By the frame rule, we first derive

{emp ∗ ∃x(ϕ)} x := new(e) {(x 7→ e) ∗ ∃x(ϕ)}

Clearly, ϕ implies emp ∗ ∃x(ϕ). On the other hand, let h, s |= (x 7→ e) ∗ ∃x(ϕ). So
there exists a split h = h1 ⊎ h2 such that h1, s |= x 7→ e and h2, s[x := n] |= ϕ, for
some n. Since |= {ϕ} x := new(e) {ψ}, we derive that h2[s(x) := s[x := n](e)], s |=
ψ, that is, h, s |= ψ (note that s(x) ̸∈ dom(h2) and, since x does not appear in e,
we have s[x := n](e) = s(e), and thus h = h2[s(x) := s(e)]).

Dispose Let ϕ′ denote (x ̸↪→ −) ∧ ∃y(ϕ[⟨x⟩ := y]). By the frame rule, we first
derive

{(x 7→ −) ∗ ϕ′} [x] := ⊥ {emp ∗ ϕ′}

See above (mutation) for the kind of argument that establishes that ϕ implies
(x 7→ −) ∗ ϕ′. On the other hand, Let h, s |= emp ∗ ϕ′, that is, h, s |= ϕ′, and so
by the above substitution lemma, we have h[s(x) := n], s |= ϕ, for some n (again, y
does not appear in ϕ). Since {ϕ} [x] := ⊥ {ψ}, we derive h[s(x) := ⊥], s |= ψ, that
is, h, s |= ψ, since h, s |= x ̸↪→ −.

Chapter 5

Conclusion
In this thesis, we investigated new foundations for separation logic. These new
foundations are presented in two parts: in the first part, we presented a model
theoretic investigation of separation logic with the aim of finding an adequate
semantics, and novel finitary proof systems for separation logic for which we showed
soundness and completeness. In the second part, we proposed a new interpretation
of Reynolds’ logic in such a way that it is compatible with the semantics of the
first part: it turned out that all axioms are still sound and relatively complete with
respect to the new interpretation. We also introduced dynamic separation logic,
and showed that it yields an alternative axiomatization of Reynolds’ logic that
avoids introducing separating connectives when generating weakest preconditions
and strongest postconditions.

Summary
To see more clearly the bigger picture, we summarize this thesis in Table 5.1. The
table displays the different subjects studied and references various sections. As a
starting point of this thesis we considered background knowledge, shown in the left
column of Table 5.1: first-order logic, Hoare’s logic, and dynamic logic.

• First-order logic is a well-known assertion language with a rich model theory
and proof theory, and Gödel’s completeness theorem connects these two
views on first-order logic. Chapter A of the appendix revisits the necessary
background knowledge on first-order and higher-order logic.

• Hoare’s logic is a program logic useful for reasoning about program cor-
rectness. A program S is provably correct with respect to a specification
that specifies the precondition ϕ and postcondition ψ, denoted by the Hoare
triple {ϕ} S {ψ}, if it is the case that such Hoare triple can be deduced
from Hoare’s axioms. The proof system of Hoare’s logic can be given a rich
program semantics, for which it can be shown that there is a soundness and
relative completeness result. Chapter B of the appendix revisits the necessary
background knowledge on Hoare’s logic, but presents it in a general way that
is more suitable for the rest of this thesis.

113

114 CHAPTER 5. CONCLUSION

First-order logic (FOL)

• well-known assertion language
(see Section A.1)

• rich model theory
(see Section A.2)

• rich proof theory
(see Section A.3)

• Gödel’s completeness theorem
(see Section A.4)

Separation logic (SL)

• extends FOL with connectives ∗, −∗
(see Section 2.1)

• model theoretic investigation
(see Section 2.2, 2.3)

• general semantics and proof theory
(see Section 3.1, 3.3)

• soundness and completeness
(see Section 3.2, 3.4)

Hoare’s logic (HL)

• Hoare triple {ϕ} S {ψ}
(see Section B.1)

• rich program semantics
(see Section B.2, B.3)

• Cook’s relative completeness
(see Section B.4)

Reynolds’ logic (RL)

• semantics relative to memory models
(see Section 4.1)

• richer program semantics
(see Section 4.2)

• soundness and relative completeness
(see Section 4.3)

Dynamic logic (DL)

• extends FOL with modality [S]ϕ

• HL is embedded in DL

• DL is more expressive than HL

Dynamic separation logic (DSL)

• extends DL with connectives ∗, −∗
(see Section 4.4)

• RL is embedded in DSL
(see Section 4.5)

Table 5.1: One-page summary of this thesis. Novel contributions are emphasized.

115

• Dynamic logic is an extension of first-order logic, by adding a so-called
program modality to the assertion language. It is the case that Hoare’s logic
can be embedded in dynamic logic: every program that can be proven to be
correct in Hoare’s logic also can be proven to be correct in dynamic logic.
However, dynamic logic is more expressive than Hoare’s logic. The reader
can consult [107] for more background knowledge on dynamic logic.

This thesis continued study of the subjects shown in the right column of Table 5.1:
separation logic, Reynolds’ logic, and dynamic separation logic. The first contribu-
tion is nominal, by disambiguating separation logic from Reynolds’ logic (where the
former strictly speaks of the logic of the assertion language, and the latter speaks
of the program logic).

• Separation logic is an extension of first-order logic that introduces two new
connectives. We recalled the syntax of separation logic, and have shown that
its standard semantics is inadequate. Searching for an adequate semantics
has given several interesting results: full separation logic is inadequate, and
several fragments of the syntax of separation logic are also inadequate. We
then have introduced a more general semantics, akin to Henkin’s general
semantics, for separation logic and defined two proof systems for deducing
consequences: one sequent calculus, and one natural deduction system. We
have shown that for both we have soundness and completeness, and this
settles the open problem of adequacy for separation logic (the separation
logic counterpart to Gödel’s completeness theorem connecting model theory
and proof theory).

• Reynolds’ logic is an extension of Hoare’s logic in two ways: Hoare triples
{ϕ} S {ψ} now speak about pointer programs S too, and the precondition
ϕ and postcondition ψ are now assertions of separation logic. All Hoare
triples provable from Hoare’s axioms are also provable in Reynolds’ logic, but
Reynolds’ logic proves more triples than in Hoare’s logic (e.g. those involving
separating connectives). We have given a general semantics to Reynolds’ logic
relative to memory models, and we have based the program semantics on
top of the semantics of the primitive operations of pointer programs: lookup,
mutation, allocation, deallocation. Reynolds’ axioms, and the frame rule in
particular, are still sound and relatively complete in the more general setting,
even when we allow for infinite heaps.

• Dynamic separation logic is an extension of first-order dynamic logic by
adding the separating connectives, similar to how separation logic adds the
separating connectives to first-order logic. First-order dynamic separation
logic is a novel subject, not studied in the literature before. We have seen
how to give semantics to dynamic separation logic, and we have investigated
a calculus for reducing program modalities involving the primitive pointer-
manipulating operations. Since it is also the case that Reynolds’ logic can
be embedded in dynamic separation logic, this resulted in an alternative
axiomatization of Reynolds’ logic that analyzes the logical structure of pre-
or postconditions.

116 CHAPTER 5. CONCLUSION

Future work
In this section, we discuss suggestions of directions for further study. One direction
is to systematically compare the different semantics for separation logic that were
introduced in this thesis. The next direction is to fully formalize the results
presented in this thesis in a proof assistant, and the soundness and completeness
of the proof systems for separation logic in particular, to increase our confidence
in the results. The third direction is to enhance tool support for reasoning about
separation logic. Another direction is to investigate relative completeness in the case
of recursive procedures in such a setting that the frame rule is necessary. Further
directions are investigating other separation logic variants, such as intuitionistic
separation logic and permission-based separation logic, and other program logics,
such as concurrent separation logic. A last direction is to investigate the Curry-
Howard correspondence for our new natural deduction proof system for separation
logic, and whether our new semantics also works with proof systems such as the
logic of bunched implications.

Different semantics
In the chapters introducing new semantics for separation logic and Reynolds’ logic,
we have seen the following interpretations of separation logic:

• SSL for Standard Separation Logic which interprets separation logic formulas
with respect to all finite heaps (see Definition 2.2.1),

• FSL for Full Separation Logic which interprets separation logic formulas
with respect to all (finite or infinite) heaps (see Definition 2.3.1),

• GSL for General Separation Logic which interprets separation logic formulas
with respect to a fixed set of (finite or infinite) heaps (see Definition 4.1.2),

• MSL for Memory Separation Logic which interprets separation logic formulas
with respect to memory models, a set of heaps that satisfies a number of
closure conditions (see Definition 4.1.6) necessary for showing the soundness
and relative completeness of Reynolds’ logic.

The valid formulas of separation logic are included in the following ways:

• the set of valid formulas according to GSL are included in the set of valid
formulas according to MSL,

• the set of valid formulas according to MSL are included in the set of valid
formulas according to SSL and also in the set of valid formulas according to
FSL.

So, it is possible to see MSL as a generalized interpretation that does not depend
on the finiteness condition of the heap.

To obtain a sound and complete proof system, we relaxed the condition that
the heap is functional (in the sense of a functional relation) to obtain the following

117

relational separation logic interpretations (not to be confused with relational
separation logic as investigated by Yang [231]):

• WRSL for Weak Relational Separation Logic which interprets separation
logic formulas with respect to relational structures with respect to all finite
relations (see Definition 2.5.1),

• FRSL for Full Relational Separation Logic which interprets separation logic
formulas with respect to relational structures with respect to all relations
(see Definition 2.5.2),

• GRSL for General Relational Separation Logic which interprets separation
logic formulas with respect to relational structures and a fixed set of relations
(see Definition 3.4.2),

• RSL for Relational Separation Logic which interprets separation logic formu-
las with respect to comprehensive relational structures (see Definition 3.4.4)
necessary for obtaining an adequate and finitary proof system.

The interpretations of SSL, FSL and GSL can be embedded in a natural way in
the interpretations of WRSL, FRSL and GRSL, respectively.

The interpretations RSL and MSL are important, since the finitary proof
system for separation logic we present in this thesis is sound and complete with
respect to RSL, whereas Reynolds’ logic is sound and relatively complete with
respect to MSL. Hence, by taking the intersection of these two interpretations, we
obtain our final desired interpretation of separation logic and Reynolds’ logic.

Since it is possible to instantiate Reynolds’ logic with different interpretations
of separation logic (such as the standard interpretation, full interpretation, or
general interpretations such as those restricted to first-order definable heaps and
memory models), each interpretation of separation logic induces a different set of
valid formulas which can be used in the consequence rule. This situation is similar
to that of the different interpretations of higher-order logic (weak interpretation,
full interpretation, Henkin interpretation), where each interpretation induces a
different set of valid formulas. The same formula can thus be interpreted differently,
and it remains future work to study how these interpretations are related. It also
remains future work to study the semantic relation between the different instances
of Reynolds’ program logic with different interpretations of separation logic.

Formalization
From the position of the formalist, who rejects meaning and truth in mathematics
that transcends literal symbols and their formation rules, much of mathematics
can be only understood by being based on some axiomatic treatment of set theory
(or any other foundational theory). As such, a piece of mathematics is only valid to
the formalist in so far that it can be formalized and shown to follow from axioms.
The ideal formalist never skips any detail and never needs an appeal to intuition.

Although much formal detail is provided, also in this thesis some details are
only sketched out and there were some appeals to intuition. To further increase

118 CHAPTER 5. CONCLUSION

confidence in results, one could formalize mathematical statements using a proof
assistant and meticulously check the argument by also formalizing its proof and
filling in all the details. As such, we have indeed formalized important definitions
and results of Chapter 3 and Chapter 4 in the Coq proof assistant, see Chapter D in
the appendix. However, not all results presented in this thesis have been formalized
and checked by a proof assistant, and as such there remains a threat to validity.

Another direction of future work is to formalize the semantics of separation
logic and our suggested proof systems, and verify the soundness and completeness
result by means of a proof assistant. Such future work could increase confidence in
the claimed results of this thesis.

Tool support

Since the alternative axiomatization of Reynolds’ logic we arrived at by introduc-
ing dynamic separation logic and the original axiomatization given by Reynolds
himself are both weakest precondition axiomatizations, we have that they must be
equivalent. However, evaluating existing tools for reasoning about separation logic
on simple programs and postconditions, on formulas that express the equivalence
between Reynolds’ weakest precondition and our alternative weakest precondition,
results in bugs or incompleteness.

Recall from the introduction that we have seen the generation of two weakest
preconditions for the program [x] := 0 and the postcondition (y ↪→ z):

(x 7→ −) ∗ ((x 7→ 0) −∗ (y ↪→ z)) (1.1)
≡

[[x] := 0](y ↪→ z) (1.2)
≡

(x ↪→ −) ∧ ((y = x ∧ z = 0) ∨ (y ̸= x ∧ y ↪→ z)) (1.3)

We have that (1.1) and (1.3) are equivalent. Surprisingly, a proof of the equivalence
exceeds the capability of all the automatic separation logic provers in the benchmark
competition for separation logic [201]. In particular, of the automatic provers, only
the CVC4-SL tool [186] supports the fragment of separation logic that includes
the separating implication connective. However, from our own experiments with
that tool, we found that it produces an incorrect counter-example and reported
this as a bug to one of the maintainers of the project (Andrew Reynolds). In
fact, the latest version, CVC5-SL, reports the same input as ‘unknown’, indicating
that the tool is incomplete. In the case of (semi-)interactive separation logic
provers or proof assistants (such as Iris [132], and VerCors [12, 156] that uses Viper
[159] as a back-end) we sought out expertise and collaborated in our search for
a tool-supported proof of the above equivalence. Even after personally visiting
the Iris team in Nijmegen (lead by Robbert Krebbers) and the VerCors team in
Twente (lead by Marieke Huisman), we were unable to guide the tools to produce
a proof of equivalence. The problem here seems similar to that of [122], in that
their semantics of the separating connectives, which are formalized in terms of

119

abstract monoids, are not compatible with the set-theoretic interpretation of the
points-to relation. However, only further investigation can explain what is the
reason existing tools contain bugs or are incomplete.

Another direction of future work is to develop proof assistants and automatic
provers based on the novel semantics and proof theory introduced in this thesis. A
concrete direction of future study is to improve the KeY system, which is based
on a variant of dynamic logic supporting Java programs called JavaDL, to extend
its implementation of dynamic logic to also work with separation logic formulas,
which could improve the efficiency for reasoning about aliasing in Java programs.

Recursive procedures
In this thesis we have only shown the relative completeness result of Reynolds’
logic for the primitive operations of pointer programs. Our result can be readily
extended to also cover relative completeness for the entire programming language,
including the complex programs, as in [81, 209]. In fact, in the relative completeness
result of [81], there is no need for the frame rule by arithmetically encoding finite
heaps. It remains future work to show how to extend Reynolds’ proof system to
recursive procedures, in which it is possible to give a relative completeness result
that is based on the frame rule and does not depend on an encoding of the heap
(preliminary results are submitted to a conference for peer review).

Other separation logics
The results presented in this thesis are based on the classical interpretation of
separation logic. There is also an intuitionistic interpretation of separation logic
[187], based on which one could conceive a corresponding and novel intuitionistic
dynamic separation logic. In fact, preliminary results have already indicated that
much of the work presented in this thesis can be repeated: a novel alternative
weakest precondition for intuitionistic separation logic can be defined. In fact, by
following the approach of this thesis, also a novel strongest postcondition can be
given for intuitionistic separation logic—which, as far as the author knows, has not
yet been given in the literature before. These preliminary results are presented in
Appendix C.

Also there are many variants of separation logic, such as probabilistic separation
logic [16], permission-based separation logic [33], set-based separation logic [110],
strong-separation logic [172]. It remains future work to investigate how to adapt
the semantics introduced in this thesis to those different settings.

Other program logics
O’Hearn and Brookes have introduced concurrent separation logic, which is an
extension of Reynolds’ logic for reasoning about concurrent shared-memory pointer
programs [163, 36, 37, 38]. The logic introduced by O’Hearn and Brookes is
a program logic: they use the same assertion language, separation logic, as is
investigated in this thesis. Their approach is based on the Owicki-Gries proof

120 CHAPTER 5. CONCLUSION

method [171] published in 1976. There were two papers published by S. Owicki
and D. Gries in 1976, one published by the ACM [171] and the other published
by Springer [170]. Both papers were based on the work presented in Owicki’s
Ph.D. thesis. The ACM paper explains her work in a more simplified setting,
and makes use of resources which protect program variables and ensures that the
execution of critical sections are mutually exclusive, i.e. never two critical sections
are executed at the same time. This is also the starting point for O’Hearn and
Brookes when introducing concurrent separation logic.

The Springer paper, however, offers a more ‘primitive tool, so primitive that
other methods for synchronization such as semaphores and events can be easily
described using it.’ The Springer paper is more general and allows ‘to prove
correctness for programs of such a fine degree of interleaving that the only mutual
exclusion need be the memory reference.’ [170] In this general setting, proving
correctness involves showing that parallel programs are interference free, by using
an interference freedom test on the proof outlines of the parallel components. In
contrast, interference freedom is a property that comes for free by using resources
and certain syntactic restrictions, as presented in the ACM paper: ‘complexity of
parallel programs stems from the way processes can interfere with each other as
they use shared variables. The critical section statement reduces these problems
by guaranteeing that only one process at a time has access to the variables in a
resource. The following syntax restrictions ensure that...’ [171]

It remains future work to see whether Reynolds’ logic as presented in this
thesis can also be extended to concurrent pointer programs, where the only mutual
exclusion that is provided by the programming language is at the level of accessing
or mutating a single memory reference and interference freedom tests now involves
checking proof outlines where assertions are formulated in the language of separation
logic (preliminary results are submitted to a conference for peer review). Also
other program logics, such as separation logic with higher-order store [28], can be
investigated.

Curry-Howard correspondence

A well-known connection between logic and computation, the Curry-Howard corre-
spondence, is often summarized by the slogans ‘propositions as types’ and ‘programs
as proofs’ [220]. In general, one speaks of a Curry-Howard correspondence whenever
it is possible to relate proofs in a proof theory on the one hand with terms in a
calculus on the other hand, in such a way that proof normalization of the proof
theory corresponds with term reduction in the calculus.

In this thesis we have introduced a natural deduction proof system for reasoning
about separation logic. Further work can be done in investigating meta-properties
of this proof system, such as proof normalization and normalization strategies. One
could investigate this by asking the question: what are the terms and rewrite rules
of the lambda-like calculus such that the Curry-Howard correspondence holds with
respect to the natural deduction proof system we introduced in this thesis?

Furthermore, one could investigate existing proof systems for separation logic,

121

such as the proof system of bunched implications by O’Hearn and Pym [167, 181].
Is it possible to adapt existing proof systems to work with the Henkin-like semantics
introduced in this thesis, and is it also there possible to obtain soundness and
completeness results? What are the ramifications of our novel semantics to existing
work [88] that investigates the Curry-Howard correspondence for the proof system
of bunched implications?

122 CHAPTER 5. CONCLUSION

Appendix A

Classical (higher-order) logic

In this chapter we recall the definitions and results of classical logic, upon which
the rest of this thesis depends (see also [135, 217, 213, 214, 203, 31, 152, 91, 9, 82]).
Readers already familiar with classical logic may quickly skim this chapter: no
new results are presented. However, this chapter is included for the purpose of
completeness.1

Logic is used as a formal description language. With such language, we give
descriptions with an intention to describe or assert what is the case in a universe.
Logic has versatile uses in computer science. For example, logic can be used to
describe the universe as seen from the perspective of a computer. To be more
specific, we can use logic to describe the possible memory states of a computer
at a particular instant in time. Primitive descriptions can fix what values are
held in certain places of memory, or describe relations between the values such
places of memory hold. Complex descriptions are constructed by composing
simpler descriptions, e.g. by conditionals between descriptions or quantification
over possible values.

There are different orders of languages. In a zeroth-order language one can speak
of primitive propositions and their logical connection. In a first-order language
one furthermore has the ability to speak about, and quantify over, individuals,
which are the elements in a universe, or domain of discourse. This distinguishes a
first-order language from a zeroth-order language, since in the latter one cannot
quantify over individuals. Sometimes first-order logic is called predicate logic,
whereas zeroth-order logic is called propositional logic. In a second-order language
one goes beyond the ability to quantify over individuals, and one can also quantify
over properties of individuals (see also [216]). In a third-order language, one can
quantify over properties of properties of individuals, and so on for higher-order
languages.

1After submitting some parts of this thesis to a conference on logic in computer science, one of
the peer-reviewers made a claim that was directly in contradiction with a well-known result, also
included in this chapter: Gödel’s completeness theorem. Thus, without recalling the completeness
theorem, this thesis would not be complete.

123

124 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

We consider logic from three perspectives. In the first perspective, the syntactic
perspective, one looks at the formal structure of the description language: how to
form sequences of symbols called formulas, and systems to symbolically transform
formulas and to derive formulas from other formulas. In the second perspective, the
semantic perspective, one is interested in the meaning of formulas by interpretation
of the symbols and how symbolic transformations and deductions preserve meaning.
In the last perspective, the perspective of significance, one is interested in how the
syntactic and semantic perspectives are related. In some sense, the syntax and
semantics of a language can be chosen freely, and making such choices are called
design choices. To motivate some of these design choices, it is the relation between
the syntactic and semantic perspectives which bears significance.

The significance of logic is that it is a language that is useful for describing
the universe and to reason about such descriptions. We distinguish two levels: the
level in which we speak about the universe using logic, and the level in which we
speak about the logic itself. The first level is the object-level, in which elements of
the universe, their transformations and interrelations, are the prime subject. On
this level, formulas are used to describe properties about elements of the universe,
and we are interested in the logical connections between different properties (of the
elements of the universe) that formulas can describe. The significance, or usefulness,
of a logic depends on the richness of the object-level, in what properties can and
can not be expressed by formulas. The second level is the meta-level, in which we
study the properties of the syntax and semantics themselves. These properties are
called meta-properties, to distinguish them from the properties which are described
by formulas on the object-level. In particular, first-order logic is a well-known
logic with very rich meta-properties. An example meta-property is the relationship
between the so-called syntactic consequence relation between sets of formulas and
the semantic consequence relation between sets of formulas.

There are many different logics described in the scientific and philosophic
literature, including: classical logic, modal logic, intuitionistic logic. In this chapter
we keep ourselves to classical logic: the logic in which the law of the excluded
middle holds generally. This logic is most familiar to mathematicians and computer
scientists.

This chapter proceeds as follows. Section A.1 presents the languages of logic,
mostly from a syntactical perspective. Section A.2 introduces structures in which to
interpret formulas, so to speak, and thus takes a semantic perspective. This section
also introduces the concepts of validity and entailment. In Section A.3, going back
to a syntactical perspective, we then introduce a proof system for deducing formulas.
In Section A.5, we introduce terms as a shorthand for particular formulas and
contexts. Section A.4 demonstrates the significance of logic by recalling important
meta-properties that relates the semantic concept of entailment to the syntactic
concept of deduction.

The ideas presented in this chapter are largely based on material as presented
by any competent book on mathematical logic, such as [79, 31]. An introduction
to higher-order logic can be found in [82]. The model theory is based on [47, 119].
The proof theory is based on [212, 26]. See also [17, 199, 83].

A.1. ASSERTION LANGUAGE 125

A.1 Assertion language
In this section we introduce the languages of logic. In later chapters we also speak
of programming languages and program logics, so to avoid ambiguity, we may also
speak of assertion languages to mean the languages introduced here.

We shall introduce not a single language, but a family of languages that is
parameterized by variables and a signature. A signature consists of non-logical
symbols which are taken as primitive, out of which a particular language is con-
structed. A language consists of formulas, or synonymously assertions, which are
certain (finite) sequences of symbols. The formulas are formed using syntactic rules
that depend on the signature one chooses.

Moreover, we restrict ourselves to recursive languages, meaning that for each
language there must exist an algorithm that can decide whether a given sequence
of symbols is a formula or not. Phrased differently, for each language we could
systematically generate all sequences of symbols that are formulas and we could
systematically generate all sequences of symbols that are non-formulas. This
restriction is useful for computer scientists who want to implement such languages.
We shall properly define the set of formulas below, and in such a way that the set
is recursive. Before doing so, we introduce the concepts of arity and variables.

An arity is a (finite) sequence of arities. An arity is typically associated to a
symbol to represent how many arguments, and the arity of each argument, are
expected to be following that symbol. We write (α1, . . . , αn) for a sequence of
n > 0 arities, where each of α1, . . . , αn are again arities. We write () for the empty
sequence. We say nullary to mean an arity of length 0, unary to mean an arity of
length 1, binary to mean an arity of length 2, and so on. Note that, if we ignore
all commas, the set of arities is the full Dyck language consisting of all strings of
balanced parentheses.

The order of an arity is its maximal nesting depth, starting from first-order.
We have that () is a first-order arity since no arity is nested, (()) is a second-order
arity since it has a first-order arity nested, ((), ()) is also a second-order arity since
all nested arities are first-order, and (((), ()), ()) is a third-order arity since it has a
nested second-order arity, and so on. We may also treat a natural number n as
an arity, which has precisely n directly nested first-order arities (). As a special
case, 0 is the arity () since it contains no other nested arities. Arity 0 is first-order,
whereas arity n for n > 0 is second-order. For example, 1 = (()) and 2 = ((), ()).
All second-order arities are a natural number arity n for some n > 0. We may mix
parenthesis and natural numbers, for example ((), ()) = (0, 0).

Variables (or, more precisely, variable symbols) can be understood as names or
as value placeholder symbols. Given two variables, we are able to recognize whether
they are (syntactically) identical or not. Each variable has an arity associated to
it. Two variables of different arity are necessarily different.

Definition A.1.1 (Variables). There is a recursive set V of variables, such that
each variable is associated to an arity, and for each arity there are infinitely many
variables associated to that arity.

The order of a variable is the order of the arity of the variable. We write vα

126 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

to mean that v is a variable with as associated arity α. Note that ‘v’ itself is not
a variable, but a meta-variable standing for a variable symbol. We also use wα,
where ‘w’ is again a meta-variable standing for variable symbols, and we may use
subscripts to obtain any number of such variables. The variables of arity () are
called the first-order variables. These are also called the individual variables, and
are typically denoted x, y, z (without superscript). The set of first-order variables
is also denoted by V1. Note that there are no zeroth-order variables, since in
a zeroth-order language there is no need for variables. Variables that have a
second-order arity are called second-order variables. These are also called predicate
variables (if its arity is 1) or relation variables (if its arity is greater than 1) typically
denoted P,Q,R. For example, Q2 (or, equally, Q(0,0)) is a binary relation variable
(with arity 2). The set of second-order variables is denoted by V2, and so on for
higher-order variables. We may leave out arity superscripts if the arity of a variable
is clear from context; otherwise, we leave the superscript in place.

Intuitively, variables are called that way since their meaning depends on the
context and thus vary. In contrast, one may think of a signature as consisting of
constant symbols. These symbols are called constant since their meaning does not
depend on the context and remains fixed within one language. Variable symbols
and constant symbols are separate, and both together are the non-logical symbols.

Definition A.1.2 (Signatures). A signature is a recursive set of constant symbols
such that each constant symbol is associated to a non-zero arity.

We typically denote a signature by Σ. The signatures as defined above are
signatures without parameters. The order of a constant symbol is the order of its
arity. We speak of constants to mean constant symbols of a signature.

The order of a signature is one less than the maximum order of its constants. A
first-order signature thus has constants with at most second-order arity. In other
words, a first-order signature has no constants with a third or higher-order arity.
A second-order signature has constants with at most third-order arity. And so on
for higher-order signatures.

There are no first-order constant symbols in any signature, since the only
first-order arity is zero. The constant symbols of (second-order) arity 1 are called
predicate symbols. The constant symbols of (second-order) arity n where n > 1 are
called n-ary relation symbols.

Constant symbols of a signature are typically denoted Cα (with arity α, which
may be dropped under the same proviso that holds for variable symbols), but
specific signatures may also introduce additional notational conventions. For first-
order signatures we may also use P,Q,R as constant symbols (but care must be
taken not to confuse constant symbols and variable symbols).

Remark A.1.3. In some texts about logic, signatures also include ‘[individual]
constant symbols’ and ‘function symbols’ that are separate from predicate and
relation symbols and used to build complex terms. We do not yet (need to)
introduce terms, individual symbols and function symbols at this point, but we
shall introduce them later in Section A.5. In here, we consider all symbols of a

A.1. ASSERTION LANGUAGE 127

signature to be constant symbols, in the sense that their meaning does not depend
on the context and remains fixed within one language.

For the remainder of this section, we fix a particular signature Σ. We now
continue to define the fundamental concept of logic: formulas. More precisely, we
define Σ-formulas, since their formulation depends on the chosen signature Σ. We
may speak of formulas instead of Σ-formulas, if Σ is clear from context. In the
sequel, ϕ and ψ are meta-variables standing for arbitrary formulas.

Definition A.1.4 (Formulas). A formula is constructed inductively as follows:

1. ⊥ is a formula,

2. (x
.
= y) is a formula if x and y are individual variable symbols,

3. Ξ(vα1
1 , . . . , vαn

n) is a formula if Ξ is a non-logical symbol of arity (α1, . . . , αn)
and vα1

1 , . . . , vαn
n are variable symbols of the corresponding arity,

4. (ϕ→ ψ) is a formula if ϕ and ψ are formulas,

5. (∀vαϕ) is a formula if ϕ is a formula and v a variable symbol with arity α.

All formulas are constructed by one of these five clauses. Alternatively, we can
define formulas by the following abstract grammar:

ϕ, ψ ::= ⊥ | (x
.
= y) | Ξ(vα1

1 , . . . , vαn
n) | (ϕ→ ψ) | (∀vαϕ)

The first three clauses construct primitive formulas, the last two clauses con-
struct complex formulas. Note that in the third clause, variables with non-zero
arity can be used in the place of the non-logical symbol. Parentheses, comma, ⊥,
.
=, → and ∀ are logical symbols (and thus not part of the signature nor used as
variables). The symbol .

= is called identity. We put the dot on the equality sign to
distinguish (object-level) identity from (meta-level) equality. A formula can thus
be seen as a finite sequence of logical and non-logical symbols.

We speak of the logical symbols in the following manner. Of the primitive
formulas, ⊥ is called false, (x

.
= y) is called identity (as in ‘x and y are identical’).

If in Ξ(vα1
1 , . . . , vαn

n) we have that Ξ is a variable, then we speak of an application.
Of the complex formulas, (ϕ → ψ) is called (logical) implication, and (∀vαϕ) is
called universal quantification.

Often when proving meta-properties of formulas, we proceed by induction on
the complexity of formulas. There are different measures of complexity. Typically,
we use as complexity measure the height of a formula, by viewing the formula as
a parse tree and taking the height of that tree. Alternatively, one could take as
complexity the length of a formula, by viewing a formula as a sequence of symbols
and taking the length of that sequence.

We further have the logical symbols ⊤, ¬, ̸ .=, ∧, ∨, ↔, ∃ to construct formulas
that are commonly used in classical logic. These logical symbols are given as
abbreviations. Sometimes, we write true instead of ⊤, and false instead of ⊥.

128 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

Definition A.1.5 (Logical abbreviations).

⊤ abbreviates (⊥ → ⊥)

(¬ϕ) abbreviates (ϕ→ ⊥)

(x ̸ .= y) abbreviates (¬(x
.
= y))

(ϕ ∧ ψ) abbreviates (¬(ϕ→ (¬ψ)))

(ϕ ∨ ψ) abbreviates (¬((¬ϕ) ∧ (¬ψ)))

(ϕ↔ ψ) abbreviates ((ϕ→ ψ) ∧ (ψ → ϕ))

(∃vαϕ) abbreviates (¬(∀vα(¬ϕ)))

The logical symbols ∧, ∨, →, ↔ are called (logical) connectives, since they
describe a connection between two formulas. Formulas of the form (ϕ ∧ ψ) are
called conjunctions, and (ϕ ∨ ψ) are called disjunctions, and (ϕ ↔ ψ) are called
bi-implications. The logical symbols ∀ and ∃ are called (logical) quantifiers. We
have two kinds of quantifiers: ∀ quantifies universally, and ∃ quantifies existentially.
Note that some of the above syntactic abbreviations are arbitrary: it is also possible
to introduce these logical connectives in alternative but equivalent ways.

To reduce the use of parentheses, we employ syntactical conventions for resolving
ambiguity in case parentheses are dropped. The precedence of logical symbols, from
strongest to weakest binding force, is: ¬, ∀, ∃, ∧, ∨, →, ↔. All connectives associate
to the right. The process of adding back parentheses is called disambiguation. For
example, ∀xP (x) ∧Q(x) ∧ P (x) disambiguates to ((∀xP (x)) ∧ (Q(x) ∧ P (x))).

To further reduce the use of parentheses, we may employ a single dot after
the variable that immediately follows a quantifier, that disambiguates into a pair
of parentheses of which the closing parenthesis is placed as far as possible to the
right without interfering with the parenthesis already present in the surrounding
context. For example, ∀x. P (x) ∧ Q(x) disambiguates to ∀x(P (x) ∧ Q(x)), and
(∀x. P (x)) ∧Q(x) disambiguates to (∀x(P (x))) ∧Q(x).

We also have the syntactic convention that, given directly nested quantifiers of
the same kind, such sequence of quantified variables may be listed as a (non-empty)
sequence directly after the quantifier symbols. For example ∀vα1

1 , vα2
2 , . . . , vαn

n ϕ
expands to (∀vα1

1 (∀vα2
2 (. . . (∀vαn

n ϕ) . . .))).
How are variable occurrences bound to quantifiers? The scope of a quantifier

in the formula (∀vαϕ) is the variable vα and the formula ϕ that follows it, and
we say that vα is bound to that quantifier. Informally, we can imagine the parse
tree of how a formula is constructed. The possible leaves are variables with an
associated arity. An occurrence of a symbol in a formula is a path in the parse tree
leading to that symbol. A variable occurrence is an occurrence of a variable in a
given formula. A variable occurs bound if it occurs as the immediate left child of a
quantifier symbol, e.g. the formula (∀vαP (vα)) has ∀ as root and vα as left child
and P as right child with vα nested under it. A variable vα occurs free if, following
the occurrence of vα as a path, from the root of the parse tree towards the leaf
we do not encounter any quantifier with vα as immediate left child. A variable
occurrence of vα falls under the scope of a quantifier if either it immediately follows
a quantifier, or if we follow the path back to the root we encounter a quantifier

A.1. ASSERTION LANGUAGE 129

binding the same variable. In other words, a variable occurs free if each of that
variable occurrence does not fall under the scope of a quantifier.

We now define the set of free variables of a formula, being the set of all variables
that occur free in it. Similarly, we define the set of bound variables of a formula.

Definition A.1.6 (Free and bound variables). Given a formula ϕ. We define both
the set of free variables FV (ϕ) and the set of bound variables BV (ϕ) inductively
on the structure of ϕ as follows:

• FV (⊥) = ∅ = BV (⊥),

• FV (x
.
= y) = {x, y} and BV (x

.
= y) = ∅,

• FV (C(vα1
1 , . . . , vαn

n)) = {vα1
1 , . . . , vαn

n } and BV (C(vα1
1 , . . . , vαn

n)) = ∅,

• FV (wα(vα1
1 , . . . , vαn

n)) = {wα, vα1
1 , . . . , vαn

n } and BV (wα(vα1
1 , . . . , vαn

n)) = ∅
where α = (α1, . . . , αn),

• FV (ϕ→ ψ) = FV (ϕ) ∪ FV (ψ) and BV (ϕ→ ψ) = BV (ϕ) ∪ BV (ψ),

• FV (∀vαϕ) = FV (ϕ) \ {vα} and BV (∀vαϕ) = BV (ϕ) ∪ {vα}.

The set of variables V (ϕ) is defined V (ϕ) = FV (ϕ) ∪ BV (ϕ).

Note that the second and third clause are discriminated by the non-logical
symbol being either a constant symbol in our signature or a variable symbol. In
the second clause, the constant symbol C must have arity (α1, . . . , αn), and in the
third clause, the variable w must have arity (α1, . . . , αn): both constraints follow
from the construction of formulas. Other concepts that are inductively defined on
the structure of formulas follow a similar pattern.

Note that for every formula ϕ, we have that V (ϕ) is a finite set. This is easily
seen, since every formula is a finite sequence of symbols, thus there can only be
finitely many variables that occur in it. If V (ϕ) ⊆ {vα1

1 , . . . , vαn
n } we also write

ϕ(vα1
1 , . . . , vαn

n). For example, ϕ(x) is a formula ϕ in which at most x occurs free.

Definition A.1.7 (Sentences). A sentence is a formula without free variables.

It is important to note that the context ∀vα . . . is so-called referentially opaque
[205], meaning that the value each variable refers to in formulas under a quantifier
may change. For example, (x

.
= y) and ∀x(x

.
= y) may have a different meaning: in

one formula x could refer to a different value than the value x refers to in the other
formula. This distinction is especially important when substitutivity comes in play,
e.g. when replacing x by z, since referential opacity breaks our näiuve principle of
‘substitution of equals for equals’.

Convention A.1.8 (Barendregt’s variable convention). As a convention, we separate
the names used for free variables and bound variables. Formally, a formula ϕ
complies to this convention whenever it is the case that FV (ϕ) ∩ BV (ϕ) = ∅.

130 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

It is possible to transform every formula into a formula that complies to the
above convention. For that we introduce two concepts: fresh variables and variable
renaming. Fresh variables are variables that do not occur in some context. A
renaming allows us to transform a given formula into another formula in which
variables are uniformly replaced. Now, by choosing appropriate fresh variables for
bound variables, we can separate the free and bound variables of a given formula.

We can now motivate our choice in Definition A.1.1 to have for each arity an
infinite supply of variables associated to that arity. This allows us to always be
able, given a formula ϕ, to give a fresh variable of some arity. A variable vα is fresh
if it does not occur in a formula, i.e. vα ̸∈ V (ϕ). For every variable that occurs
bound in a formula, there are infinitely many fresh variables.

Definition A.1.9 (Variable renaming). A variable renaming is a mapping π of
variable symbols, such that variables of a given arity are mapped to variables of
the same arity. We define the application π(ϕ) of a renaming π to a formula ϕ
inductively on the structure of ϕ as follows:

• π(⊥) = ⊥,

• π(x
.
= y) = (π(x)

.
= π(y)),

• π(C(vα1
1 , . . . , vαn

n)) = C(π(vα1
1), . . . , π(vαn

n)) for constant symbol C,

• π(wα(vα1
1 , . . . , vαn

n)) = π(wα)(π(vα1
1), . . . , π(vαn

n)) where α = (α1, . . . , αn),

• π(ϕ→ ψ) = π(ϕ) → π(ψ),

• π(∀vαϕ) = ∀π(vα)π(ϕ).

It is worth pointing out that a renaming can potentially change multiple
variables simultaneously. For example, ∃y(∀xP (x) ∧ Q(y)) can be renamed to
∃x(∀yP (y) ∧Q(x)) by swapping x and y simultaneously. We may leave the exact
mapping used to rename implicit. To explicitly denote a renaming, we use the
notation

(
v
α1
1 ... vαn

n

w
α1
1 ... wαn

n

)
to denote the renaming which simultaneously renames vα1

1

into wα1
1 , . . ., vαn

n into wαn
n (from top to bottom) and leaves all other variables

identical. In the previous example, the renaming (x yy x) is used.
When performing renaming, it is sometimes important that the variable that

is renamed to is not captured by a quantifier. For example, in the formula
∀xP (x, y) ∧ Q(y) we have that both occurrences of y have the same referents
(they are both the same free variable), whereas if we rename y to x to obtain
∀xP (x, x) ∧ Q(x), the one occurrence of variable x falls under the scope of the
quantifier ∀x whereas the other occurrence remains free. We say that vα0 remains
free for wα1 in ϕ if all occurrences of wα1 in ϕ do not fall under the scope of a
quantifier binding vα0 .

Note that for formulas that comply to Barendregt’s convention, where the
bound and free variables are separate, we do not have a problem with renaming
of variables if the resulting formula also complies to Barendregt’s convention. To
ensure this, one could partition the variables into two sets: those potentially used

A.1. ASSERTION LANGUAGE 131

for free variables, and those potentially used for bound variables. If a renaming
retains the status of each variable (i.e. renaming free variables to other potentially
free variables, and renaming bound variables to other potentially bound variables),
no variable ever gets captured since free variables are never used under quantifiers.
When one formula is obtained from another by the application of a renaming of
the bound variables, we say the formulas are alphabetic variants.

Given non-empty lists of variables v⃗ = vα1
1 , . . . , vαn

n and w⃗ = wα1
1 , . . . , wαn

n

such that the lists match up in length and arity. We write ϕ[v⃗ := w⃗] to mean the
operation where first ϕ is suitable renamed to avoid capture of the variables in w⃗,
and then the renaming of the variables v⃗ into w⃗, respectively. This operation is
also called (capture-avoiding) substitution.

As a convention, if we are given a formula ϕ(vα1
1 , . . . , vαn

n) with its free variables
among the listed variables, then writing ϕ(wα1

1 , . . . , wαn
n) denotes a formula obtained

from ϕ by substituting the variables vα1
1 , . . . , vαn

n by respectively wα1
1 , . . . , wαn

n ,
leaving all other variables identical. For example, given ϕ(x, y), then ϕ(y, z) is the
result obtained from simultaneously substitution x to y and y to z in ϕ. We need
to take care to avoid variable capturing: if ϕ(x, y) is ∀z(x

.
= y), then ϕ(y, z) must

be ∀w(y
.
= z) where we have renamed the bound variable z appropriately. We may

sometimes be unclear, e.g. where ϕ(x) can have two meanings: either it declares
that ϕ has the free variable x, or by ϕ(x) we mean ϕ with the identity renaming
applied (which results in ϕ itself).

The order of a formula is determined as the maximum order of the arities of the
variable symbols that occur in it, and a formula is called a zeroth-order formula
if no variable occurs in it. So, if there is at least one variable occurrence and all
variables that occur are first-order, then the formula in question is first-order. And
so on for second and higher-order formulas.

In general, we can classify formulas by their order, and in doing so we also
include the formulas of lower order. In a zeroth-order formula, no variables occur.
In a first-order formula, all variables that occur are first-order and all constant
symbols that occur have a second-order arity. Hence, the set of first-order formulas
contains the set of zeroth-order formulas. In a second-order formula, all variables
that occur are at most second-order and all constant symbols that occur are at most
third-order. Hence, the set of second-order formulas contains the set of first-order
formulas. And so on for higher-order formulas.

A context is a list of formulas, typically denoted ϕ1, . . . , ϕn. We also have the
empty list of formulas, for which we do not need any special notation. We may
treat a single formula as a list of formulas of length 1 consisting of just that formula.
If Γ and ∆ are lists of formulas, then by Γ,∆ we mean the list formed by adjoining
the formulas in the first list to the formulas in the second list. Consequently, by
Γ, ϕ and ϕ,Γ we mean the lists formed by suffixing or prefixing the list consisting
of a single formula ϕ to the list of formulas Γ, respectively.

On the one hand, contexts are syntactic and finitary objects: every formula
is a finitary object, and every list of formulas can be seen as a finite sequence
of formulas. On the other hand, we now introduce theories, which are possibly
infinitary objects and in some cases are entirely semantic.

132 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

Definition A.1.10 (Theories). A theory is a set of sentences.

A first-order theory is a set of first-order sentences, a second-order theory is
a set of second-order sentences, and so on for higher orders. A finite theory is a
theory where its set of sentences is finite, and an enumerable theory is a theory
with a countable set of sentences. In particular, we shall look at three classes of
theories: satisfiable theories, consistent theories, and complete theories.

In Section A.2, we introduce the semantics of formulas, and in particular we
define when a theory is satisfiable (also called semantically consistent). A theory Γ
is satisfiable (viz. semantically consistent) if there exists a structure for which all
sentences in the theory are satisfied (one may think that the theory ‘consists of’ at
least one such structure). In a satisfiable theory Γ, it must be the case that not all
sentences are in Γ. However, the converse, if not all sentences are in Γ, does not
necessarily imply that Γ is satisfiable.

Then, in Section A.3, we introduce syntactic proof systems and we define when
a theory is deductively closed. A theory Γ is deductively consistent (or consistent
in short) if it is not possible to deduce false from it. Equivalently, the theory Γ
is consistent if there exists some sentence that is not contained in the deductive
closure of Γ.

A theory Γ is complete if for every sentence ϕ, either ϕ ∈ Γ or (¬ϕ) ∈ Γ. It is
called complete in the sense that it is no longer possible to add any more sentences
without the theory turning inconsistent: if one adds a sentence to a complete theory
that was not yet contained in it, closing the resulting theory deductively would
result in an inconsistent theory.

The significance of these definitions is described in Section A.4, where we give
the main result that the syntactic proof systems are, in a precise sense, adequate for
our semantics: the notion of syntactic consistency coincides exactly with the notion
of semantic consistency. Sometimes this is also called soundness and completeness
(not to be confused with complete theories).

A.2 Basic model theory

In this section we introduce models of the languages we introduced above, in the
style of Tarksi. Models are also called structures. Structures are used to give
meaning to formulas of a language. We thus take a semantic perspective in this
section. The meaning of formulas builds on two concepts: interpretations and
valuations. Each structure fixes a domain of discourse, also called the universe.
The domain restricts the values that are possible. Each structure also fixes the
interpretation of constant symbols, assigning to each constant symbol a value.
Structures further induce valuations, which assign to each variable symbol a value.
Given both an interpretation (for the constant symbols) and valuation (for the
variable symbols), we are able to give meaning to formulas relative to an ambient
structure.

Both interpretations and valuations employ the concept of value, albeit assigning
them to constants or variables, respectively. Values are structured by an arity and

A.2. BASIC MODEL THEORY 133

range over the domain. The values of first-order symbols range directly over the
elements of our domain. There are no first-order constant symbols, only first-order
variables. The values of second-order symbols range over particular sets comprising
elements of our domain, depending on their arity. Moreover, the role of quantifiers
in our language is to modify valuations, and thereby varying the value of variables
depending on their context.

Definition A.2.1 (Values). Given a domain D. Let D[α] denote the set of values
of D of arity α. A value of D of arity α is constructed inductively:

1. An element d ∈ D is a value of D of arity 0.

2. A set S ⊆ D[α1] × . . .×D[αn] is a value of D of arity (α1, . . . , αn).

All values are constructed by one of these two clauses.

It is easy to see that D[0] = D and D[(α1, . . . , αn)] = P(D[α1] × . . .×D[αn])
where P denotes the powerset operator on sets. Hence we have D[1] = P(D),
D[2] = P(D ×D), and D[n] = P(Dn) for arities n > 1.

Example A.2.2. Let N be our domain. We then have the following values of N:

• First-order values:

0, 1, 2, . . . are in N[0] = N. Every natural number is a first-order value.

• Second-order values:

{1, 3, 5, . . .} is in N[1] = P(N), {(0, 1), (1, 2), (2, 3), . . .} is in N[2] = P(N×N),
et cetera. Every possible set of natural numbers is a second-order value in
N[1], and every possible binary relation on natural numbers is a second-order
value in N[2], and so on.

• Third-order values:

{(f, S) | f : N ⇀ N and S = dom(f)} in N[(2, 1)] = P(P(N × N) × P(N)).
This value describes a relational between a relation f and a set S, where
f : N⇀ N means that f is a partial function on N, and dom(f) is the set of
elements on which f is defined. End of Example.

We have introduced values in this way to be able to attend to the higher-order
aspect of languages, namely how to give a value to second and higher-order variables.
We first introduce the so-called standard model theory of logic. In the standard
model, variables range over all values. It is also possible to consider a different
semantics of logic, resulting in the so-called general model theory of logic, where
variables range over a restricted set of values.

As can be seen in the example above, the first-order values are elements of
the domain. Sometimes we use elementary (or the adjective elementarily) as a
synonym of first-order, to remind the reader of this fact.

For the remainder of this section, we again fix a particular signature Σ.

134 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

Definition A.2.3 (Structures). A structure A is a pair of a domain A (a set of
elements) and an interpretation I. An interpretation I assigns every constant
symbol of arity α to a value of A of arity α.

Given that C is a constant symbol, we write CI to mean the value given to C
by the interpretation I (and it should be clear from context to which structure an
interpretation is part of). Sometimes we also speak of the extension of a constant
symbol, to mean its value given by an interpretation. Note that constant symbols
are never of arity zero, hence the extension of a constant symbol is always a set.
Further, as a convention, when we describe some structure using Gothic letters,
e.g. A,B, then we simply refer to the underlying domain using an uppercase roman
typeface, e.g. A,B, respectively.

We introduce two basic concepts involving structures: isomorphisms and sub-
structures. To do so, it is necessary to transport values of one domain to another
domain. Let f be a bijection between the domains A and B. We can use f directly
as a bijection between the values in A[0] and B[0]. We can construct a lifting
of the bijection f to higher-order values inductively. Let f1 : A[α1] → B[α1],
. . . , fn : A[αn] → B[αn] be bijections on values of arities α1, . . . , αn. Then there
exists a bijection f ′ : A[α1] × . . .×A[αn] → B[α1] × . . .×B[αn] by mapping each
component of the Cartesian product using f1, . . . , fn, respectively. Consequently,
there exists a bijection f ′′ : P(A[α1] × . . . × A[αn]) → P(B[α1] × . . . × B[αn])
between the values in A[(α1, . . . , αn)] and B[(α1, . . . , αn)].

Given two structures A and B. The structures are isomorphic, written A ∼= B,
if and only if there is a bijection f between the domains A and B such that
CJ = f ′′(CI) for every constant symbol C, where f ′′ is f lifted to a bijection
between the values of A and B of the arity associated to C, I is the interpretation
of A, and J is the interpretation of B.

The cardinality of the domains of isomorphic structures are equal. In other
words, structures with a finite domain are isomorphic only to structures with also
a finite domain, and similar for structures with countable or uncountable domains.

Given two structures A and B. Structure A is a substructure of B, written
A ⊆ B, if and only if A ⊆ B and CI = CJ ∩ A(α) for every constant symbol C,
where I is the interpretation of A, and J is the interpretation of B.

Definition A.2.4 (Valuations). Given a structure A. A valuation ρ of A assigns
every variable symbol of arity α to a value of A of arity α.

For a variable vα, by ρ(vα) we mean the value given to vα by the valuation ρ.
Note that if the domain of A is empty, there are no first-order values and thus
there cannot be a valuation, since we have (infinitely many) first-order variables
that need to be assigned a value. Hence, in the context of a valuation, we may
assume the domain of A to be non-empty.

Given a valuation ρ and a variable vα, if a is a value of A of arity α, then
ρ[v := a] is the updated valuation obtained so to satisfy the following two equations:

ρ[v := a](v) = a

ρ[v := a](w) = ρ(w) if v and w are different

A.2. BASIC MODEL THEORY 135

where w is a meta-variable standing for a variable symbol. Note that if v and w
have a different arity, they are necessarily different.

Definition A.2.5 (Satisfaction relation). Given a structure A and a valuation ρ
of A, and a formula ϕ. The satisfaction relation A, ρ |=CL ϕ is defined inductively
on the structure of ϕ:

1. A, ρ |=CL ⊥ never holds,

2. A, ρ |=CL (x
.
= y) holds iff ρ(x) = ρ(y),

3. A, ρ |=CL C(vα1
1 , . . . , vαn

n) holds iff (ρ(vα1
1), . . . , ρ(vαn

n)) ∈ P I ,

4. A, ρ |=CL wα(vα1
1 , . . . , vαn

n) holds iff (ρ(vα1
1), . . . , ρ(vαn

n)) ∈ ρ(w)
where α = (α1, . . . , αn),

5. A, ρ |=CL ϕ→ ψ holds iff A, ρ |=CL ϕ implies A, ρ |=CL ψ,

6. A, ρ |=CL ∀vαϕ holds iff A, ρ[v := a] |=CL ϕ holds for every a ∈ A[α].

The superscript CL stands for Classical Logic. Instead of writing A, ρ |=CL ϕ,
we may also speak of ‘A and ρ (classically) satisfy ϕ’, or ‘ϕ is (classically) satisfied
by A and ρ’, or ‘ϕ is (classically) satisfiable’ if there is some A and ρ. We may leave
out the superscript CL or the word ‘classically’, if no confusion can arise about
the logic we use. In the remainder of this section we drop CL and ‘classically’.

Note that the definition of the satisfaction relation above breaks down for
structures with an empty domain, since there does not exist a valuation if the
domain is empty. We still, however, have that some formulas could be considered
satisfied in such empty structures (e.g. ⊥ → ⊥ and ∀x⊥) whereas other formulas
should not (e.g. ∀P (P (x))). This technical inconvenience can be resolved by
introducing a pseudo valuation for use in empty structures only, which does not
assign first-order variables a value. However, we shall leave out the tedious details,
and keep ourselves to non-empty structures.

Also the abbreviations can be given a semantics, which follow easily from the
definition above:

• A, ρ |=CL ⊤ always holds,

• A, ρ |=CL ¬ϕ holds iff A, ρ |=CL ϕ does not hold,

• A, ρ |=CL ϕ ∧ ψ holds iff A, ρ |=CL ϕ and A, ρ |=CL ψ holds,

• A, ρ |=CL ϕ ∨ ψ holds iff A, ρ |=CL ϕ or A, ρ |=CL ψ holds,

• A, ρ |=CL ∃vαϕ holds iff A, ρ[v := a] |=CL ϕ holds for some a ∈ A[α].

The satisfaction relation depends on only finitely many variables being assigned
a value by a valuation. This is formally captured by the following proposition.
Given a set of variables X, by ρ[X] = ρ′[X] we mean that the valuations ρ and ρ′
coincide on X, that is, ρ and ρ′ assign the same values to variables in X.

136 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

Proposition A.2.6 (Coincidence condition). Given that ρ[FV (ϕ)] = ρ′[FV (ϕ)],
it follows that A, ρ |= ϕ if and only if A, ρ′ |= ϕ.

Similarly, the choice of bound variables bears no significance on the meaning of
a formula. This is formally captured by the following proposition.

Proposition A.2.7 (Invariance under renaming). Given a formula ϕ, and a
renaming π such that all free variables of ϕ stay the same, i.e. π(v) = v for all
v ∈ FV (ϕ). It follows that A, ρ |= ϕ if and only if A, ρ |= π(ϕ).

The proposition above is significant, as it provides a semantic justification for
Barendregt’s variable convention (see Convention A.1.8). It is always possible to
rename the bound variables of a formula, so that the bound variables and free
variables are separated, without changing the meaning of a formula.

Lemma A.2.8 (Substitution lemma). Given a formula ϕ and variables vα, wα,
then A, ρ |= ϕ[vα := wα] if and only if A, ρ[vα := ρ(wα)] |= ϕ.

Sometimes, it is more convenient to work with the set of valuations by which a
formula is satisfied given a particular structure.

Definition A.2.9 (Denotation). The denotation of a formula AJϕKCL is defined:

AJϕKCL = {ρ | A, ρ |=CL ϕ}.

Similar as before, we may drop CL if clear from context. We write ϕ ≡A ψ for
AJϕK = AJψK, and say that ϕ and ψ are equivalent.

We write A |= ϕ to mean A, ρ |= ϕ for all valuations ρ, and we say that ϕ is
true in A. If ϕ is a sentence that is satisfied by A and some valuation, using the
coincidence condition, we can obtain that it is also satisfied by the same structure
but with any other valuation: the valuation has no influence on whether a sentence
is satisfied by the structure. So if ϕ is a sentence, it is true in A if and only if it is
satisfied by A, that is, A |= ϕ if and only if A, ρ |= ϕ for some valuation ρ.

Given a sentence ϕ, we write |= ϕ to mean that A |= ϕ for all structures A, and
we then say that ϕ is valid.

Given a theory, i.e. a set of sentences Γ, we write A |= Γ to mean that all
sentences in Γ are true in A, that is, A |= ϕ for all ϕ ∈ Γ. We may then also speak
of ‘Γ is satisfied by A’. A theory Γ is satisfiable if there exists a structure A such
that A |= Γ. A theory Γ is finitely satisfiable if every finite subset of Γ is satisfiable.

Theorem A.2.10 (Compactness). Given a first-order theory Γ. Γ is satisfiable if
and only if Γ is finitely satisfiable.

Proof. Follows from Loś’s theorem and an ultraproduct construction, see [87,
Theorem 2.10].

We write Γ |= ϕ to mean A |= ϕ for all structures A such that A |= Γ, and
say that ϕ is a semantic consequence of Γ. As an additional case of semantic
consequence, we consider a context, i.e. a list of formulas Γ, and a formula ϕ. We

A.2. BASIC MODEL THEORY 137

write Γ |= ϕ to mean A, ρ |= ϕ for all structures A and valuations ρ such that
A, ρ |= ψ for every formula ψ ∈ Γ. Note that for contexts, we deal with formulas
that may contain free variables. As such, there is one valuation that is used in
both checking the satisfaction of all formulas of the context, and in satisfaction of
the given formula ϕ. If we have only sentences in Γ and ϕ is also a sentence, then
both readings of Γ |= ϕ coincide.

By ThCL(A) we mean the set of all sentences ϕ such that A |=CL ϕ, and we
speak of the higher-order theory of A. (Again, we may drop the superscript CL
if clear from context.) If we restrict Th(A) to the first-order formulas, denoted
Th1(A), we speak of the first-order theory of A. If we restrict Th(A) to the second-
order formulas, denoted Th2(A), we speak of the second-order theory of A. And so
on for higher orders. By the way we classify formulas, higher-order theories always
include lower-order theories, i.e. Th1(A) ⊆ Th2(A) ⊆

In general, we have for every structure A and formula ϕ that either A |= ϕ
or A |= ¬ϕ. Thus, the (first-order, second-order, . . . , higher-order) theory of a
structure is necessarily complete.

Given two structures A and B. The structures are elementarily equivalent,
written A ≡CL

1 B, if and only if for every first-order sentence ϕ we have A |=CL ϕ if
and only if B |=CL ϕ. (We may drop the superscript CL under the same proviso.)
In other words, two elementarily equivalent structures satisfy exactly the same
first-order sentences, i.e. Th1(A) = Th1(B).

Given a set of sentences Γ, by ModCL(Γ) we mean the class of all structures A
such that A |=CL Γ. (Same treatment of the superscript CL.) Gaining insight in
the classification of structures is the main goal of model theory. A first result of
model theory is given below.

Proposition A.2.11. A first-order theory Γ is complete if and only if all structures
A,B ∈ Mod(Γ) are elementarily equivalent, i.e. A ≡1 B.

The class of finite structures consists of structures A = (A, I) where the domain
A is finite. A natural question to ask is: is it possible to give a sentence that
characterizes finite structures? To be able to answer that question, it is worthwhile
to give an informal proof of the following proposition.

Proposition A.2.12. A set D is finite if and only if every injective total function
f : D → D is a surjection.

Proof. Suppose D is finite, and let f be an injective total function. Suppose,
towards contradiction, that f is not a surjection. Then there is an unreachable
element, i.e. some x for which there is no input y such that the output f(y) = x.
Since f is a total function, the function f must be defined for every input: there is
exactly one outgoing pointer for every element in D. Since D is finite, there are
n points. So there are n pointers, but at most n − 1 points are reached. Then,
according to the pigeonhole principle, there must be one point which can be reached
through f from two different inputs. This is in contradiction with the fact that f
is injective.

Suppose every injective total function f : D → D is a surjection. Suppose,
towards contradiction, that D is infinite. Then D must be non-empty, and let d be

138 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

some element of D (it does not matter which one you choose). Now consider the
set D \ {d}, which is still infinite. We can place every element of D \ {d} next to
precisely one element of D, and thus there is a bijection between D and D \ {d}.
However, this shows that we have a total function that is an injection from D to
D, but not a surjection, since d is never reached. Contradiction!

Let R be a 2-ary variable, and x, y, z distinct individual variables. We have the
following abbreviations:

• fun(R) abbreviates ∀x, y, z. R(x, y) ∧R(x, z) → y
.
= z,

• inj (R) abbreviates ∀x, y, z. R(x, z) ∧R(y, z) → x
.
= y,

• tot(R) abbreviates ∀x∃yR(x, y),

• surj (R) abbreviates ∀y∃xR(x, y).

Our characterizing sentence is now the following.

Proposition A.2.13 (Characterization of finite structures). A is a finite structure
if and only if

A |= ∀R. fun(R) ∧ tot(R) ∧ inj (R) → surj (R).

Proposition A.2.14. Given structures A and B. Then A ∼= B implies A ≡1 B.
The converse also holds for finite structures.

Thus, first-order logic is sufficiently powerful for classifying the finite structures
(up to isomorphism).

An important class of structures is that of countable structures, which are
structures with a countable domain. We say that a set X is countable if there
exists an enumeration function f : N → X ∪ {⊥} from the natural numbers to
the set (X ∪ {⊥}) in which ⊥ is a dummy element not in X, such that for every
element x ∈ X there exists a natural number n such that f(n) = x. We make use
of a dummy element to ensure that finite sets are also considered countable.

In a countable structure, the first-order values are countable although the second
and higher-order values are not countable. Although it is the case that for given
countable sets their finitary Cartesian product is again countable, this fails for
power sets. For a given countable set its power set is not countable (which follows
from a diagonalization argument).

Lemma A.2.15. Given a finite signature and countable structures A and B. Then
A ≡2 B implies A ∼= B.

Proof. The proof requires the axiom of constructibility, see also [5].

Thus, second-order logic is sufficiently powerful for classifying the countable
structures (up to isomorphism).

If we restrict ourselves to first-order signatures, we also have an important class
of structures called data structures. Essentially, a data structure is a countable
structure with a computable interpretation. Formally, this amounts to the following
conditions, where X is the domain:

A.3. BASIC PROOF THEORY 139

• there exists an enumeration function f : N → X ∪ {⊥} such that for each
x ∈ X there exists a unique natural number n such that f(n) = x,

• the set {n | f(n) ̸= ⊥} is computable (i.e. it is decidable whether a natural
number represents an element of the domain of the data structure or not),

• the interpretation is computable (i.e. the extension of every constant symbol
is a decidable set).

The unique natural number corresponding to each element of the domain is called
its encoding. One uses the encoding of an element in showing that the interpretation
is computable, since in data structures one can easily go back and forth between
the elements of the domain and their encoding as a natural number.

Proposition A.2.16. It is decidable whether a quantifier-free formula is satisfied
in a given data structure and valuation.

Note that data structures induce a natural order relation on its element, by their
enumeration order. With some additional effort, one could also define bounded
formulas (in which existential and universal quantification is always bounded) and
extend the above decidability property to bounded formulas as well. Further, given
a bounded formula ϕ, it is semi-decidable whether the formula ∃xϕ is satisfied in a
given data structure and valuation.

A.3 Basic proof theory
We now investigate syntactical systems for deduction, also called proof systems.
First, we introduce proof systems in abstracto, in the sense that we abstract
from the (syntactic) objects which are involved in deductions. Many interesting
properties of proof systems can already be stated in the abstract, regardless of the
syntactic objects [26]. Then, we investigate a particular proof system for classical
logic, by instantiating objects by the formulas of our assertion language. Later in
this thesis, we also introduce proof systems for reasoning about separation logic
and program correctness, thus further motivating the approach of giving proof
systems in the abstract first.

Definition A.3.1 (Proof system). A proof system D = (O, /) consists of a class
of objects O and a deduction relation / on lists of objects and objects, that satisfy
the following conditions:

(Rg) a1, . . . , an / ai for any 1 ≤ i ≤ n,

(Tg)
a1, . . . , an / b1,
...

... ,
a1, . . . , an / bm

 and b1, . . . , bm / c implies a1, . . . , an / c.

Whenever a list of objects a1, . . . , an and an object b are related by the deduction
relation /, we say that ‘b follows from a1, . . . , an’ or ‘a1, . . . , an leads to b’. If that is

140 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

the case, the objects a1, . . . , an are called the premises and b is called the conclusion.
The witness that the deduction relation between premises and a conclusion holds
is called a deduction. It should be clear from context to which proof system
the deduction relation / belongs. We fix some proof system D = (O, /) until
Definition A.3.4.

The condition (Rg) is called generalized reflexivity, and the condition (Tg) is
called generalized transitivity. Note that the we require an expressive meta language
due to the many ellipsis: the condition (Tg) reads as ‘if bi follows from a1, . . . , an
for all 1 ≤ i ≤ m and c follows from b1, . . . , bm, then c also follows from a1, . . . , an’.
Both conditions imply the non-generalized facts:

(R) a / a,

(T) a / b and b / c implies a / c,

which establishes that the deduction relation is reflexive and transitive.
In some logic texts, deductions are depicted in a different way. Instead of

writing a1, . . . , an / b1 up to a1, . . . , an / bm, deductions are rendered as

a1 . . . an
D1

b1 . . .

a1 . . . an
Dm
bm

Deductions are tree shaped, where a conclusion is at the root of the tree and the
premises are its leaves. Note that in the depiction above the premises and the
conclusions are all part of the deductions. So, above, a1, . . . , an and b1 are all part
of D1. With this perspective in mind, we may also call deductions proof trees.
Using this notation we can depict generalized transitivity as follows. Assuming the
deduction given above, and the deduction given below

b1 . . . bm
D′

c

we can imagine pasting the proof trees D1 up to Dn in the place of the leaves
b1, . . . , bm of the proof tree of D′, where the conclusions of the former proof trees
overlap with the premises of the latter, to finally obtain the deduction:

a1 . . . an
D1

b1 . . .

a1 . . . an
Dm
bm

D′

c

which is to say, there exists a deduction D:

a1 . . . an
D
c

A.3. BASIC PROOF THEORY 141

A proof system is called finitary if the class of objects is a decidable set and
if there are finitary means to establish that the deduction relation holds. We do
not require that the class of objects is a finite set, but we do require a recursive
deduction relation. This can be imagined by having finite certificates that serve as
witnesses for establishing that the deduction relation holds. Finitary proof systems
play an essential rôle in computer science, since the certificates that establish
deductions of a finitary proof system can be checked by a computer. This allows
for the development of tools for constructing and checking deductions. In the
remainder, we shall pay attention mostly to finitary proof systems.

Lemma A.3.2 (Exchange, weakening, contraction).

(E) a1, . . . , ai, ai+1, . . . , an / b implies a1, . . . , ai+1, ai, . . . , an / b,

(W) a1, . . . , an / c implies a1, . . . , an, b1, . . . , bm / c,

(C) a1, . . . , an, b, b, c1, . . . , cm / d implies a1, . . . , an, b, c1, . . . , cm / d.

The proof follows easily from generalized reflexivity and transitivity. The
conditional (E) is called the property of exchange. It describes, intuitively, that if
there is a deduction from a list of premises, then we must also have a deduction in
which the premises are permuted. The conditional (W) is called the property of
weakening. Intuitively it says, if there is a deduction from a list of premises, we
must also have a deduction in which additional (but unused) premises are present.
Finally, the conditional (C) is called the property of contraction. Intuitively, the
multiplicity of premises do not matter. Thus, it is possible to see the list of
premises of any deduction as a finite set of objects (where duplicates and order do
not matter), which can always be extended with additional premises.

We now introduce concepts that are derived from the deduction relation. If we
have two objects and one object follows from the other and vice versa, then we say
that the two objects are mutually deducible. For that purpose we introduce the
following abbreviation,

a // b abbreviates a / b and b / a

Mutual deducibility has two important properties, namely that we can replace any
conclusion or premise with an object which is mutually deducible. The proof of
the following lemma is again simple.

Lemma A.3.3 (Substitutivity). a // b and c1, . . . , cn / a implies c1, . . . , cn / b,
a // b and c1, . . . , cn, a, d1, . . . , dm / e implies c1, . . . , cn, b, d1, . . . , dm / e.

An important derived concept is that of relative demonstrability. When describ-
ing proof systems, one is foremost interested in this concept. We introduce the
following notation: ⊢D. The symbol ⊢ is called a turnstile. The superscript anno-
tates which proof system is used, and may be dropped if the proof system is clear
from context. We first define the concept of relative demonstrability, which can
then be refined into four concepts familiar to most users of logic: complementarity,
demonstrability, contradictoriness, and refutability.

142 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

Definition A.3.4 (Relative demonstrability). Let D = (O, /) be a proof system.
We define relative demonstrability as a relation ⊢D on lists of objects, as follows:
a1, . . . , an ⊢D b1, . . . , bm if and only if

b1, d1, . . . , dk / c and . . . and bm, d1, . . . , dk / c implies a1, . . . , an, d1, . . . , dk / c

for all d1, . . . , dk and for all c.

Given that a list of objects a1, . . . , an and a list of objects b1, . . . , bm are related
by the relative demonstrability relation, i.e. a1, . . . , an ⊢ b1, . . . , bm, then we call
the objects a1, . . . , an the antecedents and the objects b1, . . . , bm the succedents.
We shall talk about the exceptional cases, when either of the two lists is empty, as
follows: if ⊢ b1, . . . , bm then we call b1, . . . , bm complementary, if ⊢ b then we call b
provable, if a1, . . . , an ⊢ then we call a1, . . . , an contradictory, and if a ⊢ then we
call a refutable.

We have the following important property of relative demonstrability:

a1, . . . , an ⊢ b if and only if a1, . . . , an / b.

It captures that relative demonstrability and the deduction relation coincide in
case there is a single succedent. Furthermore, we have

a1, . . . , an / b1 or . . . or a1, . . . , an / bm implies a1, . . . , an ⊢ b1, . . . , bm.

Note that the converse does not hold in general. While the deduction relation
must be recursive, relative demonstrability is not necessarily recursive (this can be
seen from its definition, where we have an unbounded universal quantification over
sequences of objects).

Example A.3.5. Construct a proof system: take O to be two distinct objects, say a
and b, and take the smallest deduction relation that satisfies generalized reflexivity
(and thus generalized transitivity). Then we do have that /a or /b implies ⊢ a, b.
But the converse fails. Clearly ⊢ a, b holds (consider on the meta-level that only
instances of generalized reflexivity satisfy the premise when both a and b are in
d1, . . . , dn). But we have neither /a nor /b.

Similar to Lemma A.3.2 we also have properties of exchange, weakening, and
contraction, but on either sides of the turnstile.

Lemma A.3.6 (Left/right exchange, weakening, contraction).

(LE) a1, . . . , ai, ai+1, . . . , an ⊢ b1, . . . , bm implies
a1, . . . , ai+1, ai, . . . , an ⊢ b1, . . . , bm,

(RE) a1, . . . , an ⊢ b1, . . . , bi, bi+1, . . . , bm implies
a1, . . . , an ⊢ b1, . . . , bi+1, bi, . . . , bm,

(LW) a1, . . . , an ⊢ c1, . . . , ck implies a1, . . . , an, b1, . . . , bm ⊢ c1, . . . , ck,

(RW) a1, . . . , an ⊢ c1, . . . , ck implies a1, . . . , an ⊢ c1, . . . , ck, b1, . . . , bm,

A.3. BASIC PROOF THEORY 143

(LC) a1, . . . , an, b, b, c1 . . . , cm ⊢ d1, . . . , dk implies
a1, . . . , an, b, c1 . . . , cm ⊢ d1, . . . , dk,

(RC) a1, . . . , an ⊢ c1, . . . , cm, b, b, d1, . . . , dk implies
a1, . . . , an ⊢ c1, . . . , cm, b, d1, . . . , dk.

Note that an easy corollary that follows from right exchange and right weakening
is that we also have generalized reflexivity for ⊢, as follows:

a1, . . . , an ⊢ b1, . . . , bm if ai = bj for some i, j.

Another important consequence of the definition of relative demonstrability is:

Lemma A.3.7 (Cut). If a1, . . . , an ⊢ b1, . . . , bm, e and e, a1, . . . , an ⊢ b1, . . . , bm
then a1, . . . , an ⊢ b1, . . . , bm.

Proof. Fix arbitrary d1, . . . , dk and c. It is sufficient, assuming bi, d1, . . . , dk / c
for 1 ≤ i ≤ m, to show a1, . . . , an, d1, . . . , dk / c. Applying (LW) and (LE) on our
assumptions, we obtain bi, a1, . . . , an, d1, . . . , dk / c for 1 ≤ i ≤ m. From the second
premise we know that e, a1, . . . , an, d1, . . . , dk / c. Applying all these facts to the
first premise we obtain a1, . . . , an, a1, . . . , an, d1, . . . , dk / c. After applying (LE)
and (LC) we reach our goal.

Now that we have explored proof systems in the abstract, we can construct
particular and concrete proof systems. Typically, one constructs a finitary proof
system by following three steps:

1. One first specifies what is the class of objects. The class of objects typically
has a certain structure, e.g. there are operations defined on objects such that
the class of objects is closed under application of the operations.

2. One defines the deduction relation: this can be done by introducing axioms
and proof rules, often in the form of axiom and proof rule schemata.

3. One checks that the resulting proof system is finitary (i.e. the class of objects
and the deduction relation are recursive), by showing there is an algorithm
that can decide the deduction relation.

The third step is easy if one takes a recursive set of objects and defines the
deduction relation inductively. However, an alternative to the second step above
is by imposing constraints on the deduction relation, e.g. in terms of relative
demonstrability. Then the third step is non-trivial.

We consider two classes of proof rules: simple and complex. Axioms and simple
proof rules are often depicted as follows:

b

a1 . . . an
b

where the axiom on the left denotes ⊢ b (the conclusion b follows from no premises)
and the proof rule on the right denotes a1, . . . , an ⊢ b (the conclusion follows from

144 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

the premises a1, . . . , an). One may consider an axiom to be a proof rule without
premises. Contrastingly, one may depict complex proof rules as follows:

D1
a1 . . .

Dn
an

b

which expresses how to construct a deduction with conclusion b, given deductions
D1 up to Dn with conclusions a1 up to an, respectively. In such constructions,
one also has to describe how to treat the premises of the deductions on top of the
rule. For example, the constructed deduction may have less premises than the
premises of D1 up to Dn combined. In such cases, the object used as premise in
the deduction on top is called an assumption, which is closed by the complex proof
rule. Such situations are also depicted as follows:

a1 . . .

c1
...
ck

an

b

to indicate that the premises of the deduction on top of a1 are also taken to be
premises of the resulting deduction, but that the objects c1, . . . , ck in the deduction
on top of an are assumptions, and hence not premises of the resulting deduction.

A simple proof rule can be considered to be a complex proof rule where the
premises are shared among all deductions and no assumptions are closed: this is
what generalized transitivity ensures. Axiom and (simple or complex) proof rule
schemata employ meta-linguistic constructs to describe constraints that must hold
for its instances.
Example A.3.8. Consider the set N of objects, where 0 is zero and s : N → N the
successor function. We have the following axiom and simple proof rule schema:

0
x
s(x)

The proof rule is a schema, where x is a meta-linguistic variable standing for any
object x ∈ N, and s(x) is the object obtained after applying the successor function
s at the meta-level. The deduction relation can now inductively be defined: only
the above axiom and proof rules (instances of the above proof rule schema) may
be employed, next to generalized reflexivity and generalized transitivity that hold
for every proof system. As an example, we have 1 / 3 as shown by its deduction:

1
2
3

which we read as stating that both 2 follows from 1 (that is, 1 / 2), and 3 follows
from 2 (that is, 2 / 3), which can be combined in one deduction by transitivity.
The above is one of the many possible deductions establishing the same conclusion
(in this case 3) with the same premises (in this case just 1). End of Example.

A.3. BASIC PROOF THEORY 145

An important aspect of proof theory is the analysis of proof systems. Recall, if
we have ⊢ a, we say that a is provable. Given a proof system D, one could consider
the class of all provable objects {a | ⊢D a}. Proof systems can be compared by
comparing their classes of provable objects. In particular, one can ask whether a
given proof rule is redundant. A proof rule is redundant if in a proof system without
that proof rule, the class of provable objects is the same as for the proof system
with that proof rule. We introduce two concepts that capture such redundancy, in
essentially different ways: derivability and admissibility of proof rules.

Given a proof system D which has a simple proof rule

a1 . . . an
b

then if a1, . . . , an ⊢D−
b in a proof system D− without the above proof rule, we

call that proof rule derivable. Clearly, a derivable proof rule is redundant, since the
class of all provable objects of D and D− are the same. Indeed, for any deduction
in D where the rule is used, we can ‘cut’ out the rule and ‘paste’ in the deduction
witnessing a1, . . . , an ⊢D−

b at the place where the rule is used. If this ‘cut and
paste’-procedure is applied for every occurrence of the proof rule, one ends up with
a deduction in D−.

Similarly, given a proof system D which has a complex proof rule

D1
a1 . . .

Dn
an

b

then if c1, . . . , cmi
⊢D−

ai for all 1 ≤ i ≤ n implies d1, . . . , dk ⊢D−
b in a proof

system D− without the above proof rule, we call that proof rule admissible (the com-
plex proof rule imposes conditions on how the premises of the involved deductions
c1, . . . , cmi are related to the premises of the constructed deduction d1, . . . , dk).
Informally, a complex proof rule is admissible if it can be mimicked by a con-
struction involving the deductions D1 up to Dn. Also an admissible proof rule is
redundant. Consider a deduction of D in which the above complex proof rule is
used. Consider the context where the proof rule occurs, such that the proof rule
does not occur in the deductions of the premises, but each deduction Di has a list
of premises c1, . . . , cmi . We cut out the derivations with as conclusion the premises
a1, . . . , an, to establish (possibly after weakening) c1, . . . , cm1

⊢D−
a1 and . . . and

c1, . . . , cmn
⊢D−

an, from which we then obtain a new deduction by the fact that
the rule is admissible, which can be placed in the place of the rule. After this
procedure is applied for every occurrence of the proof rule, from the leaves to the
root, one ends up with a deduction in D−.

A proof rule is weakly admissible if we have that ⊢D−
ai for all 1 ≤ i ≤ n

implies ⊢D−
b. Thus weakly admissible proof rules are not necessarily eliminable

in arbitrary contexts. If a proof rule is not weakly admissible, it is not admissible
either. Further, in some cases, the requirement of admissible proof rules that the
resulting deduction d1, . . . , dk ⊢D−

b does not contain the proof rule at all is too
strong. If our goal is to eliminate the rule from any deduction, it is sufficient that

146 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

the proof rule can be pushed upward in every deduction in which it occurs, and
eliminated when it occurs near the top: so that either the size of the deductions
used as premises become smaller, or the resulting deduction is indeed in D−.

When comparing derivability with admissibility, there is an important distinc-
tion: derivability can be applied to any rule occurrence, but admissibility can only
be applied to rule occurrences where the deductions of the premises are already free
from occurrences of the redundant rule. In admissibility, the resulting deduction
with the redundant rule eliminated is constructed from the leaves back to the root,
whereas no such order is imposed when eliminating derivable rules. Moreover, to
obtain a deduction where the redundant rule is eliminated, for admissible proof
rules, the original deductions of the premises can be changed (except for for their
premises and conclusion), whereas for derivable rules those deductions remain
intact.

In fact, derivability of a proof rule is stronger than admissibility. This can
be demonstrated by the following example, where we analyze a proof rule with
conclusion b and a single premise a. Consider the following two properties:

if a / b then ⊢ a implies ⊢ b (A.1)
if ⊢ a implies ⊢ b then a / b (A.2)

The first property (A.1) states that derivability implies weak admissibility. Given a
deduction a / b, we know that the provability of a implies the provability of b. This
is a consequence of transitivity, by applying the deduction without premises of a
in the place of the premise a in the deduction a / b to obtain ⊢ b. This argument
also works when there are arbitrary additional premises c1, . . . , cm from which a
follows, hence derivability also implies admissibility. Hence, the first property holds
for every proof system.

The second property (A.2) states that weak admissibility implies derivability.
However it can be shown that the second property does not hold in general: there
is a proof system in which it fails. Hence, admissibility does not imply derivability,
since weak admissibility already does not imply derivability.

Example A.3.9. Consider the set Z of objects, where 0 is zero, s : Z → Z the
successor function, and p : Z → Z the predecessor function. Take the same axiom
and proof rule schema as we did in the last example (so we have only the instances
where x ∈ N):

0
x
s(x)

Comparing this proof system to the previous example, we see that their sets of
provable objects must be the same. We now consider the simple proof rule schema

p(x)
x

with the question: is this proof rule admissible? Consider a deduction and the
top-most occurrence of an instance of this proof rule (i.e. those occurrences where
deductions of the premise do not have an instance of this proof rule as an occurrence).

A.3. BASIC PROOF THEORY 147

Then it must be the case that the conclusion p(x) is in N. We can then eliminate
the proof rule by replacing its instance by an instance of the other rule, which
deduces s(p(x)) from p(x). Keep working downwards and we eventually obtain
a deduction in which this proof rule no longer occurs. Hence the proof rule is
admissible.

But is it derivable? Consider the following instance: 0 follows from −1. Since
the instances of the remaining proof rule are limited to x ∈ N, we cannot apply it
to construct a deduction with the conclusion 0. Hence the new proof rule is not
derivable. End of Example.

When considering the relative demonstrability relation ⊢D of a proof system
D = (O, /), one typically considers Γ to denote a sequence of objects in the case
of Γ ⊢D a. It is natural to extend the relative demonstrability relation to sets of
objects too.

Definition A.3.10. Let Γ ⊆ O be a set of objects. Then Γ ⊢D a holds if and only
if there exists a sequence Γ0 of elements in Γ such that Γ0 ⊢D a.

In fact, we can generalize the succedent too.

Definition A.3.11. Let Γ,∆ ⊆ O be sets of objects. Then Γ ⊢D ∆ holds if and
only if there exists sequence Γ0 of elements in Γ and sequence ∆0 of elements in ∆
such that Γ0 ⊢D ∆0.

We construct a proof system for first-order classical logic in the style of Hilbert.
Let Γ be a context (a finite sequence) of first-order formulas, and ϕ, ψ, ξ be first-
order formulas.

Definition A.3.12. Let CL be a proof system consisting of:

1. the first-order formulas of classical logic as objects,

2. the smallest deduction relation ⊢CL satisfying the conditions:

(MP) Γ ⊢CL (ϕ→ ψ) and Γ ⊢CL ϕ implies Γ ⊢CL ψ,

(G) Γ ⊢CL ϕ implies Γ ⊢CL (∀y (xy)ϕ)
where x ̸∈ FV (Γ) and either y = x or y ̸∈ FV (ϕ),

(A1) ⊢CL (ϕ→ (ψ → ϕ)),

(A2) ⊢CL ((ϕ→ ψ) → ((ϕ→ (ψ → ξ)) → (ϕ→ ξ))),

(A3) ⊢CL ((∀x(ϕ→ ψ)) → (ϕ→ (∀y (xy)ψ)))
where x ̸∈ FV (ϕ) and either y = x or y ̸∈ FV (ψ),

(DN) ⊢CL (¬¬ϕ→ ϕ),

(∀E) ⊢CL ((∀xϕ) → (xy)ϕ) where y remains free for x in ϕ,

(=I) ⊢CL (x
.
= x),

(=E) ⊢CL ((x
.
= y) → ((zx)ϕ→ (zy)ϕ)) where x, y remain free for z in ϕ.

148 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

It is easy to see that the above proof system is finitary. Each first-order formula
is a finite object. Further, the witness of a deduction, Γ ⊢CL ϕ, is a proof tree with
premises in Γ and conclusion ϕ. The leaves of the proof tree are instances of an
axiom scheme or a premise in Γ, and the internal nodes of the proof tree are either
obtained from the proof rule (MP) where there are two branches, or the proof rule
(G) where there is one branch. These proof trees also satisfy generalized reflexivity
and generalized transitivity: compositions of proof trees are themselves proof trees.

This proof system is in the style of Hilbert, since the only proof rules are modus
ponens (MP) and generalization (G). Proof rule (MP) is also called implication
elimination (→E), and (G) is also called universal introduction (∀I). Note the
distinction between (MP) stated above with additional premises in the context Γ,
and the stronger condition below:

⊢CL (ϕ→ ψ) and ⊢CL ϕ implies ⊢CL ψ (MP’)

which is stated only at the level of provability, i.e. without context. We call (MP’)
a ‘rule of provability’, whereas (MP) is called a ‘proof rule’ (since it is equivalent
to (ϕ → ψ), ϕ ⊢CL ψ). The difference between these two is that only for a proof
system with (MP) we can establish the following property, since in a proof system
that has (MP’) instead of (MP) we have only deductions from premises obtained
from generalized reflexivity or generalization.

Lemma A.3.13. Γ ⊢CL (ϕ→ ψ) implies Γ, ϕ ⊢CL ψ.

Proof. Applying weakening we obtain Γ, ϕ ⊢CL (ϕ → ψ), and by generalized
reflexivity we have Γ, ϕ ⊢CL ϕ. Hence by (MP) we obtain Γ, ϕ ⊢CL ψ.

In fact, the converse also holds.

Theorem A.3.14 (Deduction theorem). If Γ, ϕ ⊢CL ψ then Γ ⊢CL (ϕ→ ψ).

Proof. Consider the proof tree corresponding to Γ, ϕ ⊢CL ψ, and perform induction
on the structure of that tree. Either the proof tree is a leave (base case), or it is an
instance of the (MP) proof rule with two smaller proof trees on top, or an instance
of the (G) proof rule with one smaller proof tree on top.

Base case 1. If ϕ = ψ then we obtain Γ ⊢CL (ϕ→ ϕ) from (MP), (A1) and (A2).

Base case 2. If ψ was obtained by reflexivity from Γ or ψ is an instance of an
axiom scheme, then we obtain Γ ⊢CL (ϕ→ ψ) from (MP) and (A1).

Induction step (MP). Let ψ be the conclusion, where Γ, ϕ ⊢CL (ϕ′ → ψ) and
Γ, ϕ ⊢CL ϕ′ are on top. Our induction hypotheses are Γ, ϕ ⊢CL (ϕ′ → ψ)
implies Γ ⊢CL (ϕ → (ϕ′ → ψ)), and Γ, ϕ ⊢CL ϕ′ implies Γ ⊢CL (ϕ → ϕ′).
Then we obtain Γ ⊢CL (ϕ→ ψ) from (MP) and (A2).

Induction step (G). Let ψ = (∀y (xy)ψ′) be the conclusion, where Γ, ϕ ⊢CL ψ′

is on top and x ̸∈ FV (ϕ). Our induction hypothesis is Γ, ϕ ⊢CL ψ′ implies
Γ ⊢CL (ϕ→ ψ′). We obtain the result from (MP) and (A3).

A.3. BASIC PROOF THEORY 149

The deduction theorem proves that the following proof rule is admissible:

ϕ

ψ

ϕ→ ψ
(→I)

where the deduction (inside the box) with conclusion ψ may use the assumption
ϕ, which may not be a premise of the overall deduction. The ϕ at the top of the
box means that the assumption ϕ is closed, that is, although ϕ is a premise of
the inner deduction it is not a premise in the resulting, outer deduction. Another
consequence of the deduction theorem is that we can clear out the context. Let
Γ = ϕ1, . . . , ϕn, then (Γ → ψ) is abbreviates (ϕ1 → (. . .→ (ϕn → ψ) . . .)). In case
Γ is an empty sequence, then (Γ → ψ) is just ψ. Note that this does not work for
arbitrary sets, since our formulas are finitary.

Corollary A.3.15. Γ ⊢CL ψ if and only if ⊢CL (Γ → ψ).

Lemma A.3.16. We have the following derived axioms and proof rules:

(⊤I) ⊢CL ⊤,

(⊥E) ⊥ ⊢CL ϕ,

(DN) ¬¬ϕ ⊢CL ϕ,

(→I) Γ, ϕ ⊢CL ψ implies Γ ⊢CL (ϕ→ ψ),

(→E) (ϕ→ ψ), ϕ ⊢CL ψ,

(∧I) ϕ, ψ ⊢CL (ϕ ∧ ψ),

(∧EL) (ϕ ∧ ψ) ⊢CL ϕ,

(∧ER) (ϕ ∧ ψ) ⊢CL ψ,

(∨IL) ϕ ⊢CL (ϕ ∨ ψ),

(∨IR) ψ ⊢CL (ϕ ∨ ψ),

(∨E) (ϕ→ ξ), (ψ → ξ), (ϕ ∨ ψ) ⊢CL ξ,

(∀I) Γ ⊢CL ϕ implies Γ ⊢CL (∀y (xy)ϕ)
where x ̸∈ FV (Γ) and either y = x or y ̸∈ FV (ϕ),

(∀E) (∀xϕ) ⊢CL (xy)ϕ where y remains free for x in ϕ,

(∃I) (xy)ϕ ⊢CL (∃xϕ) where y remains free for x in ϕ,

(∃E) Γ ⊢CL (∃xϕ) and Γ, (xy)ϕ ⊢CL ψ implies Γ ⊢CL ψ
where y ̸∈ FV (Γ, ψ) and either x = y or x ̸∈ FV (ϕ),

150 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

(=I) ⊢CL (x
.
= x),

(=E) (x
.
= y) ⊢CL ((zx)ϕ→ (zy)ϕ) where x, y remain free for z in ϕ.

Proof. See Basic Proof Theory by Troelstra and Schwitchenberg, Section 2.4.

The proof system consisting of the axiom and proof rules of Lemma A.3.16 is
called natural deduction. From this proof system it is also possible to derive the
axioms and proof rules of Definition A.3.12.

Further, employing the fact that relative demonstrability is a relation on two
lists of formulas, we have the following properties. In the following, let Γ and ∆ be
contexts (finite sequences of formulas). The antecedent context can be seen as a
conjunction of its formulas, and the succedent context can be seen as a disjunction
of its formulas.

Corollary A.3.17. ϕ, ψ ⊢CL ξ if and only if (ϕ ∧ ψ) ⊢CL ξ.

Let Γ = ϕ1, . . . , ϕn, then
∧

Γ is an abbreviation for the formula (ϕ1 ∧ (. . . ∧
(ϕn ∧ ⊤) . . .)). In case Γ is empty,

∧
Γ is just ⊤.

Corollary A.3.18. Γ ⊢CL ∆ if and only if
∧

Γ ⊢CL ∆.

Lemma A.3.19. Γ ⊢CL ϕ, ψ if and only if Γ ⊢CL (ϕ ∨ ψ).

Proof. Given Γ ⊢CL ϕ, ψ, and apply (∨IL) and (∨IR), to obtain Γ ⊢CL (ϕ ∨ ψ).
The other direction is more interesting. Given Γ ⊢CL (ϕ ∨ ψ), and let ∆ and
ξ be arbitrary. We assume ϕ,∆ ⊢CL ξ and ψ,∆ ⊢CL ξ. From these, we have
ϕ ⊢CL (∆ → ξ) and ψ ⊢CL (∆ → ξ) by Corollary A.3.15. Hence Γ ⊢CL (∆ → ξ)
by (∨E), and thus Γ,∆ ⊢CL ξ.

Let Γ = ϕ1, . . . , ϕn, then
∨

Γ is an abbreviation for the formula (ϕ1 ∨ (. . . ∨
(ϕn ∨ ⊥) . . .)). In case Γ is empty,

∨
Γ is just ⊥.

Corollary A.3.20. Γ ⊢CL ∆ if and only if Γ ⊢CL
∨

∆.

The observations above together motivate the introduction of another abbrevia-
tion. Let Γ ⇒ ∆ abbreviate

∧
Γ →

∨
∆. We call Γ ⇒ ∆ a sequent.

Lemma A.3.21. Γ ⊢CL ∆ if and only if ⊢CL Γ ⇒ ∆.

Lemma A.3.22. We have the following derived axioms and rules of proof:

(L⊥) ⊢CL ⊥,Γ ⇒ ∆,

(L∧) ⊢CL ϕ, ψ,Γ ⇒ ∆ implies ⊢CL (ϕ ∧ ψ),Γ ⇒ ∆,

(R∧) ⊢CL Γ ⇒ ∆, ϕ and ⊢CL Γ ⇒ ∆, ψ implies ⊢CL Γ ⇒ ∆, (ϕ ∧ ψ),

(L∨) ⊢CL ϕ,Γ ⇒ ∆ and ⊢CL ψ,Γ ⇒ ∆ implies ⊢CL (ϕ ∨ ψ),Γ ⇒ ∆,

(R∨) ⊢CL Γ ⇒ ∆, ϕ, ψ implies ⊢CL Γ ⇒ ∆, (ϕ ∨ ψ),

A.3. BASIC PROOF THEORY 151

(L→) ⊢CL Γ ⇒ ∆, ϕ and ⊢CL ψ,Γ ⇒ ∆ implies ⊢CL (ϕ→ ψ),Γ ⇒ ∆,

(R→) ⊢CL ϕ,Γ ⇒ ∆, ψ implies ⊢CL Γ ⇒ ∆, (ϕ→ ψ),

(L∀) ⊢CL (∀xϕ), (xy)ϕ,Γ ⇒ ∆ implies ⊢CL (∀xϕ),Γ ⇒ ∆
where y remains free for x in ϕ,

(R∀) ⊢CL Γ ⇒ ∆, (xy)ϕ implies ⊢CL Γ ⇒ ∆, (∀xϕ) where y is fresh,

(L∃) ⊢CL (xy)ϕ,Γ ⇒ ∆ implies ⊢CL (∃xϕ),Γ ⇒ ∆ where y is fresh,

(R∃) ⊢CL Γ ⇒ ∆, (xy)ϕ, (∃xϕ) implies ⊢CL Γ ⇒ ∆, (∃xϕ)
where y remains free for x in ϕ,

(Ref) ⊢CL x
.
= x,Γ ⇒ ∆ implies ⊢CL Γ ⇒ ∆,

(Rep) ⊢CL x
.
= y, (zy)ϕ, (

z
x)ϕ,Γ ⇒ ∆ implies ⊢CL x

.
= y, (zx)ϕ,Γ ⇒ ∆

where ϕ is a primitive formula.

where the condition of freshness of y means that y does not occur free in the contexts
Γ,∆ nor is y = x.

Proof. See Basic Proof Theory by Troelstra and Schwitchenberg, Section 3.5 and
Section 4.7.

The proof system consisting of the axioms and proof rules of Lemma A.3.21
and Lemma A.3.22 is called sequent calculus. The fact that this is indeed a proof
system is non-trivial, since to show that generalized transitivity holds it relies on
the elimination of cuts (not further discussed here). In fact, as can be easily seen
from the definition above, this proof system has a recursive relative demonstrability
relation, an important result due to Gentzen. From this proof system it is also
possible to derive the axioms and proof rules of Lemma A.3.16.

The classically provable formulas are formulas that can be proven using one of
the proof systems described above.

Definition A.3.23. A theory T of first-order formulas is deductively closed if for
every subset Γ ⊆ T and first-order formula ϕ such that Γ ⊢CL ϕ also ϕ ∈ T .

The notion of deductively closed can be generalized to other proof systems as
well, and is not specific to CL.

Proposition A.3.24. Every first-order theory Th1(A) of a structure A is deduc-
tively closed (with respect to CL).

A proof system is finitary whenever we have recursive enumerability of the
provable formulas. Finitary proof systems are useful in practice, since they allow a
computer to systematically generate proofs.

152 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

A.4 Soundness and completeness
The main results of first-order logic are now given. We assume Γ is a set of
first-order formulas, and ϕ is a first-order formula.

Lemma A.4.1 (Soundness). Γ ⊢CL ϕ implies Γ |=CL ϕ.

Lemma A.4.2 (Completeness). Γ |=CL ϕ implies Γ ⊢CL ϕ.

Proof. Originally proven by Gödel [93]. See also the proof by Henkin [108], and
Kleene’s overview [136]. It can also be formally established using the interactive
theorem provers Isabelle/HOL [191] and Coq [134].

Although we already established compactness of the satisfiability relation, in
the sense of the compactness theorem (see Theorem A.2.10), we can now also show
compactness of the semantic consequence relation in an alternative way. This
follows easily from the fact that we have a finitary proof system that is sound and
complete.

Theorem A.4.3. Γ |=CL ϕ if and only if Γ0 |=CL ϕ for some finite subset Γ0 ⊆ Γ.

Proof. Given that Γ |=CL ϕ holds, by completeness we have that Γ ⊢CL ϕ. Since
our proof system is finitary, there are only finitely many formulas in Γ used in the
deduction of ϕ. Let Γ0 be those formulas. Hence Γ0 ⊢CL ϕ, and by soundness
Γ0 |=CL ϕ. The other direction is easy: given that Γ0 |=CL ϕ for some finite subset
Γ0 ⊆ Γ, then we may always add more formulas to obtain Γ |=CL ϕ.

Theorem A.4.4 (Undecidability). There is no algorithm that can decide whether
Γ |=CL ϕ or not, for every signature, theory Γ, and formula ϕ.

Proof. This is Church’s theorem, see [23]. This result can also be established using
Coq [120].

Note that the undecidability result is an existential statement: it does not mean
there are no some signatures, theories, and formulas, for which the satisfiability
relation is decidable. In fact, there are signatures and theories, for which the
satisfiability relation is decidable.

A.5 Adding back terms
Up until now we have only considered signatures that consists of constant symbols,
which are associated to a non-zero arity. In particular, signatures may contain
predicate symbols (of arity 1) and relations symbols (of arity n for some n > 1)
or constant symbols with third-order or higher-order arity. From a practical
perspective, however, this set-up limits our ability to directly refer to individuals
of the domain. Although we are able to give a name to individuals, e.g. in the
context of a quantifier where an individual variable ranges over elements of the
domain, and we are able to identify two individuals, we lack the ability to directly

A.5. ADDING BACK TERMS 153

refer to individuals by some name, that denotes the individual regardless of the
context in which that name appears.

In this section we consider an extension of the assertion language of classical
logic in which we add facilities for referring to individuals of the domain directly.
In our discussion we shall not formalize all aspects of our extension explicitly,
leaving some details to the reader, and focus on first-order assertion languages.
The purpose of our exposition is to show that this extension does not change the
expressive power of first-order logic.

We have added .
= as a logical symbol, but consider for a moment an alternative

approach: what if .
= is a 2-ary relation symbol? In second-order languages it is

not needed to add such a relation to the signature, since the concept of identity is
indirectly definable. The second-order sentence

∀x, y. (x
.
= y) ↔ ∀P. P (x) ↔ P (y)

expresses that identity satisfies Leibniz’s law of the identity of indiscernibles and
its converse, the indiscernability of identicals: two elements share every property
if and only if the two elements are identical. However, in first-order languages
without identity as logical symbol, this cannot be expressed. Every structure gives
an interpretation to the relation symbols, including .

= taken as relation symbol.
A structure A = (A, I) has a standard interpretation of identity if I assigns to
the identity relation symbol .

= the value {(x, y) | x = y} ⊆ A × A. Thus, in the
standard interpretation, the extension of identity coincides with our meta-level
concept of equality. This amounts to the same what we have accomplished in our
definition of the satisfaction relation for the logical symbol .

=.
Now we can introduce the derived concept of unique existence. We introduce

the following abbreviation:

∃!xϕ abbreviates ∃x(ϕ ∧ ∀y(ϕ′ → x
.
= y))

where y is fresh (i.e. y is not x and does not occur in ϕ), and ϕ′ is obtained from ϕ
by renaming x to y. Semantically, we have that

A, ρ |= ∃!xϕ holds iff A, ρ[x := a] |= ϕ for a unique a ∈ A.

The ability to express unique existence has two important consequences. Suppose
that A |=ρ ∃!xϕ holds. Consider the case in which formula ϕ has only x as a free
variable. By the coincidence condition, we then have that there must exists a
unique a ∈ A regardless of the valuation ρ. As such we say that ϕ defines the
element a (in A). Similarly, consider the cases where all the free variables of formula
ϕ are in the sequence of variables x1, . . . , xn, x (where we assume that all variables
are distinct). Again by the coincidence condition we have that there must exists a
unique total function f : An → A regardless of the valuation ρ:

f = {(a1, . . . , an, a) | A, ρ[x1 := a1] . . . [xn := an][x := a] |= ϕ}

and we can again say that ϕ defines the total function f (in A).

154 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

Example A.5.1. Suppose we have a signature comprising the following constant
symbols (and nothing else):

• we have the predicate symbol Z of arity 1,

• we have the relation symbol S of arity 2.

We can now state that there is exactly one element of the domain x such that Z(x)
holds by asserting

∃!xZ(x).

Further, we can state that for every element of the domain x, there must be a
unique y such that S(x, y) holds, by asserting

∀x∃!yS(x, y).

However, can we also state that every element of the domain x is reachable either
directly through Z, i.e. Z(x) holds, or through a chain of S, i.e. S(y, x) for some
other reachable y? The following second-order sentence states this property:

∀R.(∀x.Z(x) → R(x)) ∧ (∀x, y.R(y) ∧ S(y, x) → R(x)) → ∀xR(x)

Note that not all structures (with a standard interpretation of identity) that satisfy
the two first-order sentences also satisfy the second-order sentence.
End of Example.

A useful pattern emerges: if a predicate holds for exactly one element d of the
domain, we can use that predicate as a way to identify element d. Intuitively, such
a predicate identifies the element for which it holds. Similarly, if for a relation
R, we have exactly one element of the domain d given elements d1, . . . , dn−1 and
(d1, . . . , dn−1, d) ∈ R, then we can use that relation as a way to identify d once
we are also able to identify the values of the first n− 1 places. Taking both cases
together, we say that a second-order constant symbol C of arity n has the property
of functionality if

∀x1, . . . , xn−1∃!xC(x1, . . . , xn−1, x),

holds (if n = 1 the universal quantifiers are dropped).
We now extend our definition of signature in which we explicitly declare which

constant symbols must have the above property of functionality. Predicate symbols
of arity 1 that have the property of functionality are called individual symbols (or,
more precisely, individual constant symbols). Relation symbols of arity n for n > 1
that have the property of functionality are called function symbols.

Remark A.5.2. We must make sure not to confuse constant symbols and individual
(constant) symbols. Although individual symbols are constant symbols, the converse
is not the case: all predicate symbols, relation symbols and function symbols are
also constant symbols in the sense that their meaning does not depend on the
context and remains fixed.

A.5. ADDING BACK TERMS 155

We fix a first-order signature Σ. As a syntactical convention, the uppercase
constant symbols C are used for the constant symbols of our signature. If a constant
symbol, say B, has been declared to have the property of functionality, then we use
the lowercase symbol b instead. For individual constant symbols, we typically use
the lowercase symbol c, and for function symbols we typically use the lowercase
symbol f .

We now define terms and formulas and revisit some of the concepts introduced
earlier. Note that we restrict ourselves to first-order assertion languages.

Definition A.5.3 (Terms). A term of is constructed inductively as follows:

• any individual variable symbol x is a term,

• any individual constant symbol c is a term,

• given terms t1, . . . , tn and function symbol f of arity n+ 1 then f(t1, . . . , tn)
is a term.

In the third clause, the terms t1, . . . , tn are called the arguments of the function
symbol f in the term f(t1, . . . , tn). To be able to speak of the arity of a term,
we let every term have the arity 0. We may see a term as a parse tree in which
individual variable symbols or individual constant symbols appear at the leaves
and function symbols at the branches.

Definition A.5.4 (Formulas). A formula is constructed inductively as follows:

• ⊥ is a formula,

• P (t1, . . . , tn) is a formula if P is a constant symbol of arity n and t1, . . . , tn
are terms,

• (ϕ→ ψ) is a formula if ϕ and ψ are formulas,

• (∀xϕ) is a formula if ϕ is a formula and x an individual variable.

In the second clause, we do not restrict ourselves to only predicate symbols and
relation symbols. All constant symbols (including those that have the property of
functionality) are allowed at this level. This turns out to be useful when we show
that extending first-order logic with terms does not increase the expressive power.

We can again define the set of free variables FV (ϕ) and bound variables BV (ϕ),
but to do so we need to also introduce the set of free variables FV (t) and bound
variables BV (t) for a given term t. The set of free variables FV (t) consists precisely
of all variables that occur in the term t, and the set of bound variables BV (t) is
empty. We can also extend variable renaming to terms, so that if π is a renaming
of variable symbols (that preserves arity) we can define π(t) by simultaneously
replacing all the variable occurrences in t according to π.

A more general operation than variable renaming is the operation of substitution.
Substitution is not simply a matter of replacing variables by terms. Rather, we
define substitution as a transformation of formulas in two stages. This can be

156 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

motivated by the following example. Given the formula (∀x.y = z), if we naively
replace y by a term in which x occurs as a variable, then that variable now falls
under the scope of the quantifier that binds x. The resulting formula thus has a
term which may now have a different meaning than when considering that term in
a different context, outside of the scope of the quantifier. That x would fall under
the scope of the quantifier is called variable capturing. We intend to avoid variable
capturing to ensure we can show the relation between (syntactic) substitutions and
the semantics of terms, later on.

We also have substitutions of variables for terms that prevents variable capturing.
Capture-avoiding substitution can be generalized to arbitrary formulas by first
performing a renaming to obtain an alphabetic variant, for which the condition of
the capture-avoiding substitution is always satisfied.

Definition A.5.5 (Capture-avoiding substitutions). A substitution ϕ[x := t] is
defined by replacing in ϕ all free occurrences of x by t, as long as the bound
variables of ϕ are disjoint from the free variables of t.

It is now also possible to extend the definition of structures, so that the
interpretation is extended to also interpret individual symbols and function symbols
in a certain way to guarantee that the declared properties hold. For a given
interpretation I, we let cI denote the interpretation of the constant symbol c, and
fI denote the interpretation of the function symbol f .

Definition A.5.6 (Evaluation function). Given a structure A = (A, I) and a
valuation ρ of A, and a term t. The evaluation function AJtKCL

ρ is defined inductively
on the structure of t:

• AJxKCL
ρ = ρ(x),

• AJcKCL
ρ = a where a ∈ cI ,

• AJf(t1, . . . , tn)KCL
ρ = a where (AJt1KCL

ρ , . . . ,AJtnKCL
ρ , a) ∈ fI .

We may drop the superscript CL if clear from context. In the second and third
clause, we can pick any such a. Due to the restriction on the interpretation I on
constant symbols which have the property of functionality, we know there exists
a unique one. We may also simply write ρ(t) for AJtKCL

ρ , since every valuation is
defined in a context where there is a known structure A.

It is also possible to redefine the satisfaction relation for formulas with terms,
but we shall leave out the details. An important consequence of defining such
satisfaction relation is the following lemma.

Lemma A.5.7 (Substitution lemma).

A, ρ |=CL ϕ[x := t] if and only if A, ρ[x := ρ(t)] |=CL ϕ.

There is also a translation of formulas with terms to formulas without terms
which has the same denotation, which allows us to eliminate all terms.

A.5. ADDING BACK TERMS 157

Bibliographic notes
C. Grabmayer’s PhD thesis [97] contains a more detailed analysis of abstract proof
systems and introduces the notions of derivability and admissibility of proof rules
in an abstract setting [98].

158 APPENDIX A. CLASSICAL (HIGHER-ORDER) LOGIC

Appendix B

Hoare’s logic

Hoare’s logic (some authors write: Hoare logic) was introduced by C.A.R. Hoare in
1969 [118], based on the inductive assertion method on flow charts as was introduced
in 1967 by R.W. Floyd [84, 62]. See also the collection of fundamental papers on
program verification by T.T.R. Colburn, J.H. Fetzer, and R.L. Rankin [54].

The main philosophical idea underlying both Hoare’s logic and Floyd’s inductive
assertion method is that we have two ‘modes’ of description: that of being, and that
of change. These two concepts are also understood as the statics and dynamics
of a system, respectively. By making use of a logical language (e.g. first-order
logic or separation logic) we can describe the state of being, by which one can
think of a static snapshot in time of the currently realized memory state of a
computer. By making use of a control structuring language (e.g. a flow chart or a
program in a programming language), we can describe the change of state, which
essentially describes a dynamic process which transforms initial states into final
states or chains together such transformations. By combining descriptions of both
modes, being and change, we obtain the program specification (also called the
Hoare triple):

{ϕ} S {ψ}

where ϕ is a description of the possible initial states (the precondition), S is a
description of the program that transforms an initial state into a final state, and
ψ is a description of the possible final states (the postcondition). A program
S is correct with respect to a specification whenever it is indeed the case that,
after executing the program from an initial state that satisfies the precondition,
we obtain a state as prescribed by the postcondition. In some sense, a program
specification describes the expected behavior of a program, whereas a program
simply describes behavior.

Ideally there is no need for program specifications: by making sure a program
exactly describes the change intended, it is always correct. Popularly, this is known
by the phrase: “it is not a bug, it is a feature.” However, the program specification
adds redundancy to the program. The program describes how the state changes
from an initial state into a final state, whereas the pre- and postconditions in

159

160 APPENDIX B. HOARE’S LOGIC

a program specification describes logically what is the state of being before and
after the execution of the program. The basic premise of program verification is
that humans err—and by means of program specifications, where we combine two
different languages in which one describes both the ‘intended’ program behavior
and the ‘actual’ program behavior, we can detect errors if these two behaviors do
not match.

Concretely, during execution of a program, there exists a current state of the
values of memory. A basic program either performs a test, or performs an operation.
A test is an inspection of the current state to check whether a condition on the
state holds or not. An operation performs an action that may or may not change
the state. By performing tests and operations, programs direct or control the
flow of states, from an initial state to possibly a final state. Complex programs
are composed out of programs with the intention to structure the flow of control,
where tests can be used to influence the direction of flow of control. A processor
is the component of a computer which, step by step, either performs a test or an
operation, as specified by a program. The program thus is an input to the processor,
and the program indirectly controls which tests and operations are performed by
the processor. The result of the tests consequently direct the flow of control as
described by a program, thus resulting in a feedback loop.

This conception of program originated in 1945, by the initial designs of John
von Neumann’s computer architecture [94]. Already in this early work, we can
see that memory and program are separate, and we follow this design choice and
also exclude so-called self-modifying programs. For practical reasons, we also see
differences in the storage locations of memory: the current state of the memory
of a computer can be divided into the internal state and the external state. The
internal state stores the value of registers, the external state stores the value of
addressable memory. The internal state is always directly accessible in tests, and
can be operated on. The external state can be loaded and stored, being special
operations. Thus, we do not have direct access to external state, only indirectly
through load and store operations.

This division between internal and external state is more blurred in modern
computer architectures of the past decades, by the introduction of cached memory—
where parts of the external state is duplicated into hidden registers, which cannot
be directly controlled by the program but mirror the behavior of the external
memory. This architectural choice is mainly motivated by a further division of the
use of the external memory into so-called stack memory and heap memory [111].

Since memory management is error-prone, high-level languages feature auto-
matic memory management, while some high-level languages also still allow manual
memory management. One form of automatic memory management is by using
block scopes, in which a local variable is temporarily allocated on the stack and
deallocated once the block has finished executing. Another form of automatic
memory management is using garbage-collected heaps, in which all heap memory
is scanned and regions of memory automatically deallocated if they no longer
can influence the outcome of the execution of a program. We shall consider a
programming language which features automatic stack memory management, but

B.1. SYNTAX OF PROGRAMS 161

manual heap memory management—without garbage collection.
In this chapter we shall introduce the abstract syntax of programs, introduce

three different styles of giving programs semantics (operational semantics, deno-
tational semantics, and axiomatic semantics), and discuss the proof system for
deriving correct program specifications called Hoare’s logic. The ideas presented in
Sections B.1, B.2, B.3 can be found in any competent book on program verification,
such as [71, 61, 227, 100, 86, 10]. The use of program signatures and machine
models, however, may be novel. The main motivation for revisiting the basic
material is to present it in such a way to make it easy to adapt to separation logic,
in Chapter 4. The material presented in Section B.5 is largely based on [29], but
the presentation here is novel and the proof system more modular than in [29].

B.1 Syntax of programs
This section describes the syntax of a simplified programming language, necessary
for supporting the semantics and proof system for reasoning about correctness of
programs. Although we restrict ourselves to a simplified programming language, the
expressivity of programs is nonetheless interesting: we include the Turing-complete
programming languages.

When considering the syntax of programs, there is a design choice in formulating
the programming language. One could give the concrete syntax of programs
being particular constructions of statements, or one abstracts from the primitive
operations and tests. In the latter case one can obtain the concrete syntax as a
particular instance of the abstract syntax. This set-up of the syntax of programs is
not much different than the set-up of formulas in the assertion language, where one
separates the logical from the non-logical symbols by the introduction of a signature.
Similarly, we could introduce the concept of a program signature which collects the
primitive operations and tests out of which the statements are constructed.

Given a program signature that consists of the primitive operations and tests,
we can form the statements of a program. Complex statements are constructed
from compositions of simpler statements, recursively. One can represent statements
by their parse trees in which at the leaves of the tree primitive operations and tests
occur. One may compare statements of the programming language to formulas of
the assertion language.

In fact, when one wants to extend our programming language to include recursive
procedures, the abstract syntax approach is beneficial, since procedures can be
considered particular primitive operations with a fixed interpretation given by a
system of procedure declarations. This is not much different than having recursive
predicates in the assertion language. We shall first focus on programs without
recursive procedures, and can later add recursive procedures: in a sense, recursive
procedures are an orthogonal concern.

Before introducing the formal definition of statements, we consider the possible
effects that the executions of programs have on the states of a machine. We model
these effects as a state transition, and the behavior of a program essentially is
the possible sequences of state transitions. Each such sequence is also called an

162 APPENDIX B. HOARE’S LOGIC

execution. An important design choice, however, is to contain the effect of primitive
operations and tests, by limiting what part of the state an operation or test can
(at most) be accessed, and what part of the state can (at most) be changed by an
operation.

We reuse the concept of variables (see Definition A.1.1) to denote parts of the
state. The accessible variables of a program restricts what part of the state can
influence program behavior, and the changed variables of a program restricts what
part of the state can be modified in the state transitions that constitute program
behavior. In the context of a program we speak of program variables, whereas in
the context of assertions we speak of logical variables. Although it is possible to
also consider higher-order program variables, also called subscripted variables, we
restrict ourselves to first-order program variables.

Given a program variable x, a polarized variable is either x or x (we say ‘input
x’ or ‘output x’, respectively). The absence of the line indicates that the program
variable is accessible, and the presence of the line indicates that the program
variable is changed. Note that the presence of the line on top of a program variable
makes it a different polarized variable, i.e. x ̸= x.

Definition B.1.1 (Program signature). A program signature consists of a recursive
set of operations and tests, such that each operation is associated with a finite set
of polarized variables, and each test is associated with a finite set of (accessible)
program variables.

We typically denote a program signature by ∆. If P is an operation of ∆,
then we may speak of the accessible program variables x1, . . . , xn of P and the
changed program variables y1, . . . , ym of P to mean that P is associated to the
finite set {x1, . . . , xn, y1, . . . , ym} of polarized variables. If T is a test of I, we
write T (x1, . . . , xn) to mean that x1, . . . , xn are the accessible program variables
associated to T .

Every first-order signature Σ induces a program signature, where all the tests
are quantifier-free formulas. Although the tests are fixed, it still remains a design
decision to select the appropriate operations: the selection of primitive operations
thus affects what computations can be expressed by a program.

Definition B.1.2. A first-order program signature FPS (Σ) is a program signature
such that every test with accessible program variables x1, . . . , xn corresponds to a
quantifier-free formula ϕ(x1, . . . , xn), and also includes:

• the assignment operation y := x
(where x is an accessible and y is a changed program variable).

The first-order program signature corresponds to register machines, where
program variables are registers of the machine, and tests work on the registers of
the machine. Note that the operations of the inherited program signature may
access and change arbitrary program variables.

Block programs manipulate registers but may also temporarily store values by
pushing them on the stack, and later retrieve old values by popping them from

B.1. SYNTAX OF PROGRAMS 163

the stack. This is useful for implementing local variables, which are needed for
introducing terms later on.

Definition B.1.3. A block program signature BPS (Σ) is a first-order program
signature FPS (Σ) that also includes:

• the parallel assignment operation y⃗ := x⃗
(where x⃗ = x1, . . . , xn are accessible and y⃗ = y1, . . . , yn are changed),

• the push operation push(x)
(where x is an accessible program variable),

• the pop operation pop(x)
(where x is a changed program variable).

Note that for a push operation push(x) there are no changed variables. Al-
though the stack is modified by this operation, the stack is left implicit (as an
implementation detail) and as such not represented by a program variable.

Pointer programs not only manipulate values assigned to program variables but
also values assigned to locations on the heap. As such, we consider an extension of
first-order program signatures which includes operations for manipulating the heap.
A pointer program signature also includes operations for looking up a value from the
heap (lookup), modifying a value on the heap (mutation), allocating a new location
with an initial value (allocation), and deallocating a location (deallocation).

Definition B.1.4. A pointer program signature PPS (Σ) is a first-order program
signature FPS (Σ) that also includes:

• the lookup operation x := [y]
(where y is an accessible and x is a changed program variable),

• the mutation operation [x] := y
(where x and y are accessible program variables),

• the allocation operation x := new(y)
(where y is an accessible and x is a changed program variable),

• the deallocation operation delete(x)
(where x is an accessible program variable).

Note that for a mutation operation [x] := y there are no changed variables.
Although the heap is modified by this operation, the heap is implicit and as such
not represented by a program variable. Also the lookup, allocation and deallocation
operations above have a side-effect, namely they modify the implicit heap. This
phenomenon, where no variables (or not all) are changed but there is a (hidden)
state change, is in general called a side-effect.

Each program signature (including the standard, pointer and block program
signatures) can be used to generate statements. We fix some program signature for
the remainder of this section, unless explicitly mentioned otherwise.

164 APPENDIX B. HOARE’S LOGIC

Definition B.1.5 (Statements). Given a program signature ∆. A statement is
constructed inductively as follows:

1. O is a statement (called primitive operation) where O is an operation of ∆,

2. skip is a statement (called no operation),

3. halt is a statement (called halt operation),

4. S1;S2 is a statement (called sequential composition) given that S1 and S2

are statements,

5. if T then S1 else S2 fi is a statement (called conditional statement) given
that T is a test of ∆, and S1 and S2 are statements,

6. while T do S od is a statement (called looping statement) given that T is a
test of ∆ and S is a statement.

All statements are constructed by one of these five clauses. Alternatively, we can
define statements by the following abstract grammar:

S, S1, S2 ::= O | skip | halt | S1;S2 | if T then S1 else S2 fi | while T do S od.

The first two clauses construct primitive statements, the last three clauses
construct complex statements. Sequential composition S1;S2;S3 is ambiguous, but
harmless as turns out later, and we may use parentheses around statements to
disambiguate (S1;S2);S3 and S1; (S2;S3). We also consider a statement context,
denoted S[−], which is a statement with exactly one hole in the place of a statement.
The hole is denoted by □. Then S[S1] is a statement in which S1 is plugged into
the hole of the statement context.

The notion of accessible and changed variables can be lifted to statements S.
We write S(x1, . . . , xn; y1, . . . , ym) to mean that the accessible program variables of
S are x1, . . . , xn and the changed program variables of S are y1, . . . , ym. Sometimes
it is easier to work with the finite sets of accessible and changed variables, denoted
by access(S) and change(S), respectively. The accessible and changed variables
of a statement are an over-approximation, in the sense that these are the possible
accessed and changed variables. The set of program variables occurring in S is
denoted var(S) and is the union of the accessible and changed variables.

Definition B.1.6 (Accessible and changed variables). The accessible and changed
program variables of a statement S is defined inductively on the structure of S:

• access(O) = {x1, . . . , xn} and change(O) = {y1, . . . , ym} given that the
operation O is associated to the polarized variables {x1, . . . , xn, y1, . . . , ym},

• access(skip) = change(skip) = ∅,

• access(halt) = change(halt) = ∅,

• access(S1;S2) = access(S1) ∪ access(S2),

B.1. SYNTAX OF PROGRAMS 165

• change(S1;S2) = change(S1) ∪ change(S2),

• access(if T then S1 else S2 fi) = access(S1) ∪ access(S2) ∪ {x1, . . . , xn}
given T (x1, . . . , xn),

• change(if T then S1 else S2 fi) = change(S1) ∪ change(S2),

• access(while T do S od) = access(S) ∪ {x1, . . . , xn} given T (x1, . . . , xn),

• change(while T do S od) = change(S).

Note that the definitions of access and change do not depend on each other.
The accessible program variables can be approximated more precisely by stating

access(S1;S2) = access(S1) ∪ (access(S2) \ change(S1))

where now the changed program variables of S1 act as ‘binders’ with respect to
the statement S2. In fact,

access(S1; (S2;S3))

= access(S1) ∪ (access(S2;S3) \ change(S1))

= access(S1) ∪ ((access(S2) ∪ (access(S3) \ change(S2))) \ change(S1))

= access(S1) ∪ (access(S2) \ change(S1)) ∪ (access(S3) \ change(S1;S2))

= access(S1;S2) ∪ (access(S3) \ change(S1;S2))

= access((S1;S2);S3)

However, this may complicate the proofs involving accessible and changed variables
later on. Hence, we opt for the simpler definition given above, which is a cruder
approximation of the accessible variables.

We could define complex tests by the following abstract grammar:

B,B1, B2 ::= T | ¬B | B1 ∧B2 | B1 ∨B2

where negation binds strongest, conjunction binds more strongly than disjunction,
and the other ambiguities are harmless. We can then introduce abbreviations for
statements:

if ¬B then S1 else S2 fi := if B then S2 else S1 fi

if B1 ∧B2 then S1 else S2 fi := if B1 then if B2 then S1 else S2 fi else S2 fi

if B1 ∨B2 then S1 else S2 fi := if B1 then S1 else if B2 then S1 else S2 fi fi

if B then S1 fi := if B then S1 else skip fi

In the case of a first-order program signature, where tests are quantifier-free
formulas, this may lead to an ambiguous interpretation of tests. However, it turns
out that the semantics we give later on assigns the same meaning to both readings,
so this ambiguity is harmless.

We can introduce assertions by the following abbreviation:

assert(B) := if B then skip else halt fi.

166 APPENDIX B. HOARE’S LOGIC

B.2 Operational semantics

The first approach of giving semantics to programs is that of operational semantics.
In our operational semantics, we introduce machine models that consists of a
state space and an operationalization of the primitive operations and tests. The
semantics of a program is understood as a sequence of steps, which are taken as
the processor instructs the machine to perform primitive operations or tests. We
here abstract from the particular machine by the means of a machine model, hence
our operational semantics is too an abstraction of actual processor behavior.

This approach of abstractly giving semantics to programs is similar to giving
semantics to formulas, in which we have introduced structures that consists of a
domain of values and an interpretation of the non-logical symbols. A program
denotes behavior relative to a given machine model and initial state, similar to
how a formula denotes a truth value relative to a given structure and valuation.

Machine models can, for example, be used to show that program transformations
preserve the semantics of programs. Low-level programming languages are used to
instruct hardware to perform operations and tests, whereas high-level programming
languages abstract away from intricate or irrelevant low-level details (such as
ordering or encoding details). These programming languages have different program
signatures and machine models. A compiler transforms high-level programs into
low-level programs, and the preservation of behavior of the respective programs can
be shown by relating machine models (e.g. the behavior relative to one machine
model can be simulated by behavior of another machine model).

The syntactical structure by which statements are formed is chosen in such way
that it is suitable for giving semantics to programs, which is based on the execution
behavior of the statements of a program. This allows for structured programming,
or control-structured programming, where it is possible to recognize from the syntax
of a program what are the so-called control points for which it is possible to reason
about the possible states of the underlying machine model. Making the state of the
underlying machine model predictable is an important property of the semantics,
which ensures that one is able to reason about program correctness.

The set of control points of a program can be understood as follows. One may
consider a program to be the top-level statement containing sub-statements. Any
position before or after a sub-statement of a program is a control point. The
semantics of programs is given in terms of a current control point, which moves
around the program as statements are executed, one after the other. The intuitive
idea of control points are formalized by the continuation of a statement, that is,
what remains to be executed after a small-step in the execution of a statement
is taken. The continuation of a statement is either another statement, or the
termination marker ✓.

It is important to realize that the models we consider are abstractions of the
primitive operations and tests that can be performed on actual machines that exe-
cute programs. Based on a machine model, we can define a state transition system
that abstractly models the behavior of programs. The accuracy of the analysis of
program behavior thus relies on the precision of the chosen machine model.

B.2. OPERATIONAL SEMANTICS 167

Therefore, it is a design decision how much we are concerned about the possibility
of blocking, non-determinism, and failure. The execution of primitive operations
may result in a blocking (e.g. the machine hangs and cannot progress), in an
un(der)specified next state (e.g. the next state is not fully determined by the
previous state and the operation performed), or in an explicit failure (e.g. the
machine signals an error). We introduce failure-sensitive machine models which
take these possibilities into account.

Definition B.2.1 (Failure-sensitive machine model). A failure-sensitive machine
model M is a pair of a state space S (a set of states), and an operationalization
consisting of:

• for each operation O, a transition function which is a partial function OM of
states to a set of states,

• for each test T , a set of states TM.

Given input state s and operation O, we write s′ ∈ OM(s) if OM(s) is defined
and s′ is in the set OM(s). In that case, s′ is an output state. We write OM(s) = ∅
if OM(s) is defined and is empty. We write OM(s) = fail if OM(s) is undefined.

For a complex test B, we also have the induced set of states BM as follows:
TM as base case, ¬BM is the complement of BM, (B1 ∧B2)M is the intersection
of BM

1 and BM
2 , and (B1 ∨B2)M is the union of BM

1 and BM
2 .

One may picture a failure-sensitive machine model by means of a graph, in
which the states are vertices and directed edges, labeled by a primitive operation,
represent transitions from one state to another. The graph also may have loose
ends, which are outgoing edges from one state that leads to no state at all. The
transition function of a machine model determines the edges (possibly with a loose
end) that are present in the graph. We can then picture the following properties of
the transition function OM of a machine model M:

• If OM(s) = ∅, then the state s is an indeterminate state or a blocked state
(with respect to operation O), that is, the next state is implicitly undefined.
This may be picture by having no outgoing edges from the state s. We may
think of hanging at the indeterminate or blocked state, being unable to go to
the next state. Indeterminacy of the machine model M means that there
exists an indeterminate state, and a machine model M is progressive if there
are no blocked states (so it is impossible to hang by performing an operation).

• If OM(s) = {s′} for some s′, then the state s is a deterministic state (with
respect to operation O), that is, there is exactly one outgoing edge from s
into the next state s′. If every state of machine model M is deterministic,
then M is also called deterministic.

• If s′ ∈ OM(s) and s′′ ∈ OM(s) for different s′ and s′′, then the state s is
a non-deterministic state (with respect to operation O), that is, there are
multiple outgoing edges from s. We may think of the next state of s to be
arbitrary selected from the non-empty set OM(s). The machine model M is
called non-deterministic if there is a non-deterministic state.

168 APPENDIX B. HOARE’S LOGIC

• If OM(s) = fail, then the state s is a failing state (with respect to operation
O), that is, the next state is explicitly undefined. This may be pictured by a
loose end in the graph. A machine model which has a failing state is called
failing, and a machine model without any failing state is called non-failing.

To avoid confusion, we do not speak of the ‘determinacy’ of a machine model M.
Some authors use ‘determinacy’ to mean deterministic. However, ‘determinacy’
may also mean the lack of indeterminacy of a machine model, i.e. that performing
an operation in every state leads to some next state or is a failing state.

Now consider the processor, which consists of a programmable controller and a
machine which is being controlled. The controller takes a program that specifies
what operations the machine must perform, and what tests of the machine influence
the control flow. After the controller reaches the end of the program, the processor
terminates. Given a failure-sensitive machine model, we can also model the behavior
of programs as being executed step-by-step by an abstract processor. The processor
is abstractly modeled using configurations and transitions between configurations.

Definition B.2.2 (Configuration). Given a failure-sensitive machine model M. A
configuration is a pair of continuation and a state of M, or a failure signal fail.

Given a statement S and state s, we thus have that (S, s) is a configuration.
The configuration (✓, s) is called a terminal configuration, and fail is called the
failure configuration.

There are different approaches for modeling processor behavior, from fine-
grained to coarse-grained. In the fine-grained approach we transition from configu-
ration to configuration in small steps, and this approach is also called small-step
operational semantics where the intermediate configuration between initial and final
configuration are taken into account. In the coarse-grained approach we transition
from initial configuration directly to (one possible) final configuration. There, the
initial configuration is not related to any intermediary configurations.

The small-step semantics is closer to the behavior of an actual processor,
whereas the big-step semantics is easier to reason about and allows us to show
important closure properties of the semantics, such as compositionality. We take
both approaches, and, in fact, both approaches are equivalent in a certain sense.

Definition B.2.3 (Small-step operational semantics). Given a machine model M.
We define the binary relation −→ on configurations as the smallest relation satisfying
the following conditions:

(O, s) −→ (✓, s′) if s′ ∈ OM(s)

(O, s) −→ fail if OM(s) = fail

(skip, s) −→ (✓, s)

(S1;S2, s) −→ (S′
1;S2, s

′) if (S1, s) −→ (S′
1, s

′)

(S1;S2, s) −→ (S2, s
′) if (S1, s) −→ (✓, s′)

(S1;S2, s) −→ fail if (S1, s) −→ fail

B.2. OPERATIONAL SEMANTICS 169

(if B then S1 else S2 fi, s) −→ (S1, s) if s ∈ BM

(if B then S1 else S2 fi, s) −→ (S2, s) if s ̸∈ BM

(while B do S od, s) −→ (S;while B do S od, s) if s ∈ BM

(while B do S od, s) −→ (✓, s) if s ̸∈ BM

where s is a state and S1, S2, S are statements.

We write (S, s) −̸→ if there is no configuration C such that (S, s) −→ C. We
have (halt, s) −̸→.

Proposition B.2.4. If (S1, s) −̸→ then (S1;S2, s) −̸→.

Our intuition is that the small-step relation operates on a single statement
at a time. The sub-statement S′ of S on which we operate, is called the primed
statement of S. For each statement S, we also have a primed context S[−]′. It
is the case that S = S[S′]′, meaning that the statement S is obtained from its
primed context S[−]′ for which in the hole the primed statement S′ is plugged.
The primed statement of S is any statement that is not a sequential composition.
For any statement that is not sequential composition, the primed statement is that
statement itself and the primed context is just a single hole □. For the sequential
composition S1;S2, we have that the primed statement of S1;S2 is the primed
statement of S1 and the primed context is S1[−]′;S2 where S1[−]′ is the primed
context of S1.

Proposition B.2.5. Let S′ be the primed statement of S. We have the following:

• (S, s) −→ (S[S′′]′, s′) if (S′, s) −→ (S′′, s′),

• (S, s) −→ fail if (S′, s) −→ fail,

• (S, s) −̸→ if (S′, s) −̸→.

Proof. We have S = S[S′]′. By structural induction on S. If S[−]′ is just a hole,
the result follows immediately. Otherwise, we apply the small-step semantics for
sequential composition and the induction hypothesis.

After execution of the primed statement S′ of S is finished execution continues
with the remainder of statement S, which we denote by R(S). The remainder of a
statement is a continuation, to take into account the possibility that the remainder
is not a statement. For any statement that is not sequential composition, the
remainder is ✓. For the sequential composition S1;S2, there are two cases. The
remainder of S1;S2 is S2 if the remainder of S1 is ✓. The remainder of S1;S2 is
S′
1;S2 if the remainder of S1 is S′

1.

Proposition B.2.6. Let S′ be the primed statement of S. (S, s) −→ (R(S), s′) if
(S′, s) −→ (✓, s′).

170 APPENDIX B. HOARE’S LOGIC

Proof. Again by structural induction on S: all cases except sequential composition
are trivial. For the remaining case where S = S1;S2, we distinguish the two
cases whether R(S1) = ✓ or not, and apply the relevant small-step semantics for
sequential composition.

By the above proposition, we now have established that the small step semantics
either takes a step directly at top-level for any statement that is not a sequential
composition, or takes a step at the primed statement. Since the primed statement
is never a sequential composition, the step taken at the primed statement is a
top-level step as well.

In fact, we can say something stronger about the small-step semantics defined
above.

Proposition B.2.7 (Determinism). Given a deterministic machine model M,
then the small-step operational semantics satisfies the following property:

if C1 −→ C2 and C1 −→ C3 then C2 = C3.

The above definition of the small-step operation semantics defines a relation
between two configurations. We can imagine a chain of configurations as related
by the small-step relation −→:

C1 −→ C2 −→ . . . −→ Cn −→

Definition B.2.8. An execution is a chain of configurations related by −→, which
is either finite or infinite.

A complete execution is a finite chain with no further step possible, that is, there
is no Cn+1 such that Cn −→ Cn+1. A complete execution is necessarily finite. A
complete execution leading to termination is a complete execution that ends in some
terminal configuration (✓, s). A complete execution leading to failure is a complete
execution that ends in the failure configuration fail. A complete execution leading
nowhere is a complete execution that is neither leading to termination, nor leading
to failure. In particular a configuration C = (S, s), where s is an indeterminate
state with respect to O and O is a primed statement of S, is called an indeterminate
configuration. An complete execution that ends in an indeterminate configuration
leads to nowhere. Executions leading nowhere are also called stuck. A diverging
execution is an execution with an infinite chain of configurations.

For a given execution, the first configuration is called the initial configuration.
Conversely, an initial configuration I induces the set of complete or diverging
executions that start in the configuration I. For a complete execution, the last
configuration is called the final configuration. We may also speak of a reachable
configuration C from an initial configuration I if there exists an execution that starts
in configuration I which contains the configuration C in its chain. A configuration
is unreachable from an initial configuration if it is not reachable.

We may imagine the set of all executions, of a given machine model, to form
a forest: the roots are initial configurations which induce (possibly infinite) trees

B.2. OPERATIONAL SEMANTICS 171

formed by executions that share the same initial configuration, and for which
shared prefixes of two different executions forms the trunk of a tree. The trunk
splits in two or more branches by taking a small-step of an operation on a state
that is non-deterministic. There are three kinds of leaves. First, a leave represents
that a small-step of an operation is performed on a blocking state: there is no next
configuration. Second, a leave represents the failure configuration fail. Third, the
leave represents a terminal configuration (✓, s). The height of a configuration in a
tree represents the number of small steps taken from the initial configuration (and
as such there are no cycles back to earlier configurations), and this height is often
used to inductively reason about properties of executions.

The concepts of two executions reaching the same configuration is important
enough that it warrants its own definition.

Definition B.2.9 (Computations). Given an initial configuration I and a configu-
ration C, the set of executions starting in I and reaching C is a computation from
I to C.

A computation consists of zero or more executions, all reaching the same
intermediary configuration. A computation thus abstracts from the particular way
of reaching this configuration. A computation for which in the reached configuration
C there is still a further step possible may also consists of diverging executions. If
for the reached configuration C no further step is possible, we call the computation
complete. A complete computation necessarily consists of complete executions. A
complete computation leading to termination is a complete computation that ends
in some terminal configuration (✓, s). A complete computation leading to failure
is a complete computation that ends in the failure configuration fail. A complete
computation leading nowhere is a complete computation that is neither leading to
termination, nor leading to failure.

There may be different computations starting from the initial configuration.
In fact, an initial configuration I also induces a set of computations that start in
the configuration I. It may be the case that for the same initial configuration I,
there is a complete computation but also a computation which consists of diverging
executions.

We now introduce the big-step semantics, which captures the notion of complete
computations leading to termination or failure directly.

Definition B.2.10 (Big-step operational semantics). Given a machine model M.
We define the binary relation −↠ on configurations as the smallest relation satisfying
the following conditions:

(O, s) −↠ (✓, s′) if s′ ∈ OM(s)

(O, s) −↠ fail if OM(s) = fail

(skip, s) −↠ (✓, s)

(S1;S2, s) −↠ (✓, s′′) if (S1, s) −↠ (✓, s′) and (S2, s
′) −↠ (✓, s′′)

(S1;S2, s) −↠ fail if (S1, s) −↠ fail

(S1;S2, s) −↠ fail if (S1, s) −↠ (✓, s′) and (S2, s
′) −↠ fail

172 APPENDIX B. HOARE’S LOGIC

(if B then S1 else S2 fi, s) −↠ C if (S1, s) −↠ C and s ∈ BM

(if B then S1 else S2 fi, s) −↠ C if (S2, s) −↠ C and s ̸∈ BM

(while B do S od, s) −↠ C if (S;while B do S od, s) −↠ C and s ∈ BM

(while B do S od, s) −↠ (✓, s) if s ̸∈ TM

In the big-step semantics we can no longer distinguish between a diverging
execution or an execution leading to nowhere. In both cases we have that, for an
initial configuration I, there is no final configuration C such that I −↠ C. It is
possible to observe this difference from the small-step semantics: for the initial
configuration there is either a diverging execution, in the first case, or a complete
execution I −→ . . . −→ C that is stuck in C, when there is no step possible from
C, in the second case. However, this distinction disappears if we only consider
observing final configurations of either the form (✓, s) or fail.

In fact, there is a correspondence between big-step and small-step semantics.
Let −→+ be the transitive closure of the binary relation −→. And let I −→n C
denote that C can be reached in exactly n small steps from I. We then have that
I −→+ C holds if and only if there exists n > 0 such that I −→n C.

Proposition B.2.11. The following holds:

1. (S1;S2, s) −→+ (S′
1;S2, s

′) if (S1, s) −→+ (S′
1, s

′),

2. (S1;S2, s) −→+ (S2, s
′) if (S1, s) −→+ (✓, s′),

3. (S1;S2, s) −→+ (✓, s′′) if (S1, s) −→+ (✓, s′) and (S2, s
′) −→+ (✓, s′′),

4. (S1;S2, s) −→+ fail if (S1, s) −→+ fail.

Proposition B.2.12. C1 −↠ C3 if C1 −→ C2 and C2 −↠ C3.

Lemma B.2.13 (Correspondence small-step and big-step semantics).
I −→+ C if and only if I −↠ C for any terminal or failure configuration C.

Proof. I cannot be of the form (✓, s) or fail since both the small-step and big-
step operational semantics do not have terminal or failure configurations on the
left-hand side, while C must be of that form. So, we have that I = (S, s) for some
S, s, and C = (✓, s′) for some s′ or C = fail. (⇐=) By induction on the way
(S, s) −↠ (✓, s′) is established, transitivity of −→+, and Proposition B.2.11. (=⇒)
Assume (S, s) −→n (✓, s′) for some n > 0, we proceed by induction on n, and use
Proposition B.2.12.

Corollary B.2.14. Given a deterministic machine model M, then the big-step
operational semantics satisfies the following property:

if C1 −↠ C2 and C1 −↠ C3 then C2 = C3.

Observe that the final configurations obtained by the big-step semantics are
either (✓, s) or fail. Given an initial configuration, we have a result set of possible

B.3. DENOTATIONAL SEMANTICS 173

final configurations related to that initial configuration. The result set is either
empty (divergence or stuck), or it contains the failure configuration fail alongside
terminal configurations of the form (✓, s) for some state s ∈ S. Note that, due
to possible non-deterministic operationalizations of the machine model, the result
set may contain at the same time different terminal configurations and the failure
configuration. Each configuration in the result set is obtained by a different
computation.

Instead of considering only computations that begin in an initial configuration
with a fixed state, it is useful to abstract from the initial state. Thus, each statement
S induces a result set that is indexed by an initial state s ∈ S, i.e. {C | (S, s) −↠
C}s∈S . We can lift this construction to a set of initial states, and thereby also have
that each statement induces a result set indexed by a set of initial states X ⊆ S,
i.e. {C | (S, s) −↠ C for some s ∈ X}X⊆S .

We are interested in composing multiple results sets: given that a result set
determines the possible outcomes of parts of a statement, can we compose result
sets into the result set of the overall statement? To do so, we represent result sets
more abstractly as an element of P(S ⊎ {fail}), viz. as a subset of the disjoint
union of states and a failure marker. We could see the failure marker fail as an
improper state, and every state s ∈ S as a proper state. Every statement induces
a result set indexed by a (proper or improper) state. Equivalently, a statement
induces a function S ⊎ {fail} to P(S ⊎ {fail}), which we denote by M[S], with the
following specification:

M[S](fail) = {fail}, M[S](s) = {s′ | (S, s) −↠ (✓, s′)} ∪ {fail | (S, s) −↠ fail}

and we can lift this function to result sets, being a set of (proper or improper)
states Y ⊆ S ⊎ {fail}, with the following specification:

M[S](Y) =
⋃
y∈Y

M[S](y)

where y is either the improper state fail or a proper state in S. We thus obtain
our desired form: every statement induces a result set indexed by a result set.

B.3 Denotational semantics
We now see a second approach of giving semantics to statements, called a denota-
tional semantics. We can use functions on result sets as the domain of denotation
of statements, and we work towards characterizing our denotation of statements
in a syntax-directed manner. This allows for equational-style reasoning about the
semantics of statements.

We first introduce an approximate denotation of a statement, and then define
the denotation of a statement as the limit of the approximate denotation.

Definition B.3.1 (Denotational semantics). Given a failure-sensitive machine
model M and statement S. The approximate denotation of a statement MJSKn is
a function on result sets, defined inductively on n and structurally on S as follows:

174 APPENDIX B. HOARE’S LOGIC

• MJOKn(Y) = (Y ∩ {fail}) ∪
⋃
{OM(s)}s∈(Y ∩S),

• MJskipKn = id,

• MJhaltKn(Y) = Y ∩ {fail},

• MJS1;S2Kn = MJS2Kn ◦MJS1Kn,

• MJif B then S1 else S2 fiKn(Y) =
(Y ∩ {fail}) ∪MJS1Kn(Y ⊓BM) ∪MJS1Kn(Y ⊓ (¬B)M),

• MJwhile B do S odK0(Y) = Y ∩ {fail},

• MJwhile B do S odKn+1 =
MJif B then S; (while B do S od) fiKn,

where Y ⊆ S ⊎ {fail} is a result set, and Y ⊓X is the intersection of Y and a set
of proper states X but which propagates failure, so fail ∈ (Y ⊓X) if fail ∈ Y . We
define the denotation of a statement as the limit of the approximate denotation:

MJSK(Y) =

∞⋃
n=0

MJSKn(Y).

We may also write MJSK(s) to mean MJSK({s}) for a singleton proper state s.
One may think of the parameter n as the maximal number of loop iterations for
the outer while-statements, where the parameter decreases for statements that
are directly nested under a while-statement. By using this parameter we ensure
that the approximate denotational semantics is well-defined.

It is easy to see that the first three clauses of the approximate denotation also
hold for the limit of the approximate denotation, that is:

• MJOK(Y) = (Y ∩ {fail}) ∪
⋃
{OM(s)}s∈(Y ∩S),

• MJskipK = id,

• MJhaltK(Y) = Y ∩ {fail}.

However, to establish that the other clauses also hold for the complex statements,
we need to introduce further technical intermediary results. This is important to
do, since it allows for syntax-directed reasoning about the limit of the approximate
denotation

The approximate denotation given above has important properties, namely:

Lemma B.3.2 (Monotonicity).

1. Given result sets X ⊆ Y , MJSKn(X) ⊆ MJSKn(Y) if X ⊆ Y .

2. Given a result set Y , MJSKn(Y) ⊆ MJSKn+1(Y).

3. Given a result set Y and n ≤ m, MJSKn(Y) ⊆ MJSKm(Y).

B.3. DENOTATIONAL SEMANTICS 175

4. MJS2Kn ◦MJS1Km ⊆ MJS1;S2Kmax(n,m).

Proof. The third result depends on the second result, which depends on the first.
The first two by induction on n and S, and the last by induction on m. The fourth
result is by induction on n and S2: the case analysis is delicate and non-trivial,
and the other results are needed multiple times.

It is easy to lift the first result, and have MJSK(X) ⊆ MJSK(Y) if X ⊆ Y . The
second and third results become trivial when we lift them.

Based on the properties of monotonicity we can prove the following properties
of the (approximate) denotation. Recall that assert(B) abbreviates

if B then skip else halt fi.

We have a few intermediary technical properties, needed to establish later results.

Proposition B.3.3.

1. MJS1; (S2;S3)Kn = MJ(S1;S2);S3)Kn.

2. MJSKn = MJskip;SKn.

3. fail ∈ X implies fail ∈ MJSKn(X).

These properties are easily lifted to the limit of the approximate denotation.
We proceed to establish the following properties of the denotational semantics.

Lemma B.3.4.

• MJS1;S2K = MJS2K ◦MJS1K.

• MJif B then S1 else S2 fiK = MJassert(B);S1K ∪MJassert(¬B);S2K.

To allow for syntax-directed reasoning about while-statements, we make use
of syntactic approximations. We have the following recursively defined syntactic
approximation called loop unrolling :

(while B do S od)0 = halt,

(while B do S od)k+1 = if B then S; (while B do S od)k else skip fi.

The following holds for the denotational semantics.

Lemma B.3.5 (Loop unrolling).

MJwhile B do S odK =

∞⋃
k=0

MJ(while B do S od)kK.

It is now easy to establish, for the denotational semantics, that we can replace
statements by equivalent statements under any context. In other words, equivalent
statements cannot be discriminated by any context. Let S[−] be any statement
with a hole.

176 APPENDIX B. HOARE’S LOGIC

Corollary B.3.6 (Compositionality). MJS[S1]K = MJS[S2]K if MJS1K = MJS2K.

It is also possible to generalize compositionality to contexts with arbitrarily
many holes, for which a similar property as above holds.

We can now establish the correspondence between the operational semantics
and denotational semantics. This correspondence allows us to reason about the
operational semantics of a program using the denotational semantics, and vice
versa. Thus, both approaches in giving semantics coincide!

Lemma B.3.7 (Full abstraction). MJSK = M[S].

B.4 Axiomatic semantics
There is a third approach of giving semantics to statements, which is the axiomatic
semantics. In this approach we express the behavior of programs in terms of
program specifications. In contrast to the operational and denotational semantics
which are relative to a given machine model and—so to speak—works ‘from inside
out’, the axiomatic semantics consists of a set of program specifications and works
‘from outside in’. In the axiomatic semantics we declare which expectations we
have of the behavior of a program, without a priori knowing the inner workings of
the primitive operations of a machine model.

The behavior of a program can be modeled by its input/output behavior. Oper-
ationally, one may see program behavior as a relation between input and output
states, i.e. t ∈ M[S](s) indicates that output state t is related to the (singleton)
input state s and fail ∈ M[S](s) indicates that the program leads to failure from
the (singleton) input state s. Denotationally, we know that a statement S denotes
a state transformer MJSK, and when X is a set of (proper or improper) states that
MJSK(X) also is a set of (proper or improper) states. We have seen before that
operational and denotation semantics coincide. However, this raises the question:
what language can we use to describe states? We turn to that question later in
this section.

First, we outline the usefulness of axiomatic semantics. Expected program
behavior can be expressed by giving two descriptions: one of the set of input
states, and one of the set of output states. Formally, the description of the input
states is called a precondition, and the description of the output states is called
a postcondition. We work directly with these descriptions by the use of program
specifications. We introduce the notation {ϕ} S {ψ} for program specifications
which consists of a precondition ϕ, the statement S, and the postcondition ψ. Then,
given a suitable interpretation J−K of the precondition and postcondition as sets
of (proper or improper) states, we can interpret program specifications as follows
(called the partial correctness interpretation):

M |= {ϕ} S {ψ} if and only if MJSK(JϕK) ⊆ JψK.

By M |= {ϕ} S {ψ} we then mean that the program specification {ϕ} S {ψ} is
satisfied in the machine model M. Next, we consider sets of program specifications:
these are called program theories.

B.4. AXIOMATIC SEMANTICS 177

Similar how theories in (first-order or higher-order) logic can be used to classify
structures, we can use program theories to classify machine models. By giving a
set of program specifications which we expect to be satisfied in a given machine
model, we constrain the possible choices of machine models that are possible. Note
that such constraints can also be expressed for complex statements, e.g. involving
control structures such as loops!

Similar how each structure induces a (first-order or higher-order) theory, we
also have that each machine model induces a program theory. Given a machine
model M, then by Th(M) we denote the set of program specifications that are
satisfied in M. It is then also possible to compare machine models by their induced
program theories.

Example B.4.1. Say, we work with formulas of first-order logic for the pre- and
postconditions, and we want to introduce a new complex programming construct
which introduces local program variables with the syntax:

begin local x := y; S end

The intended meaning is that the variable x is local to the execution of the statement
S: it has an initial value determined by y, but the original value of x is restored after
execution of S ends. To describe the semantics of such a programming construct
using the axiomatic approach would amount to saying that the program theory
must be closed under the following rule:

{ϕ} x := y;S {ψ}
{ϕ} begin local x := y;S end {ψ}

where x ̸∈ FV (ψ)

Thus we are able to declaratively specify properties of the semantics of this complex
programming construct, without knowing how this construct decomposes into
primitive operations nor saying anything about the underlying denotational or
operational semantics. End of Example.

In the axiomatic approach of giving semantics, we intend to give semantics
to programs in an abstract setting, without explicitly knowing the underlying
(operational or denotational) semantics of the primitive operations. We thus need
a language in which we can express the precondition and postcondition, to be able
to describe the behavior of a program. In doing so, we have three desiderata of the
language we choose:

1. The tests (and thus assertions) can be described by the language,

2. the language is expressive enough to describe the behavior of the primitive
operations,

3. the language is closed under substitution, conjunction, and negation.

The first desideratum lets us speak of an assertion language. Although the second
desideratum is necessary, often one is still free to choose an appropriate level of
abstraction. Typically, one wishes to specify primitive operations in which the

178 APPENDIX B. HOARE’S LOGIC

(concrete) implementation details are hidden, i.e. at the level of abstraction of the
programming language itself. The third desideratum naturally leads us to choose a
logical language.

We take as assertion language the language of one of the logics that we have
introduced earlier. In doing so, we restrict the class of machine models to ensure
that the set of states and the tests are compatible with the chosen logic. In this
section we introduce logical machine models, corresponding to classical first-order
logic. In logical machine models we take valuations as states and the (denotation of)
quantifier-free formulas which are the tests. As such, we fix a first-order program
signature FPS (Σ), for a given first-order signature Σ.

Although we focus in this section on classical first-order logic, nothing prevents
us from considering other classes of machine models to be associated to different
logics. In fact, in later sections we also introduce the class of machine models
corresponding to separation logic. In principle, one can choose any logic and
make suitable design choices to map the chosen logic to a class of machine models.
For practical purposes, one makes design choices in such a way as to ensure that
assertions are decidable (i.e. tests can be effectively evaluated in any state) and
primitive operations are computable. This motivates our choice above to consider
the quantifier-free formulas as tests. In practice, one can also restrict the first-order
signature Σ to ensure only a subset of the signature of the logic can be used in
tests. When doing so, one may speak of the logical signature and the program
signature that is a subset of the logical signature. For technical simplicity, we shall
speak of only one signature.

Before giving logical machine models, we introduce the concept of equal sets of
valuations modulo a set of variables. Let X and Y be sets of valuations of some
structure A, and Z ⊆ V be a set of variables. Then by X ≡ Y mod Z we mean that
the sets X and Y are in a correspondence such that for each valuation ρ ∈ X that
corresponds to a valuation ρ′ ∈ Y we have that ρ[V \ Z] = ρ′[V \ Z]. This notion
is also defined when a function is applied on both sets that are in correspondence,
and then takes the original correspondence. Further, by X ≡ f(X) mod Z
we mean that for each valuation ρ ∈ X and valuation ρ′ ∈ f(ρ) we have that
ρ[V \ Z] = ρ′[V \ Z]. These notions can be lifted in the obvious way to result sets
(being sets consisting of valuations or fail), or sets of proper or improper states
(being the disjoint union of proper states and the fail marker).

Definition B.4.2. A logical machine model M is a pair of a structure A and an
operationalization consisting of:

• for each operation O, a transition function which is a partial function OM of
valuations to a set of valuations of A,

• for every operation x := y, the transition function (x := y)M is defined by
mapping ρ to ρ[x := ρ(y)],

• for the transition function OM we have the change condition that either
OM(ρ) = fail or ρ′[V1\change(O)] = ρ[V1\change(O)] for every ρ′ ∈ OM(ρ),

B.4. AXIOMATIC SEMANTICS 179

• for the transition function OM we have the access condition that states
that OM(ρ) ≡ OM(ρ′) mod var(O) for every ρ, ρ′ for which ρ[access(O)] =
ρ′[access(O)] holds.

The operations x := y have a fixed operationalization, namely by assigning the
value of y to the program variable x. Further, the change and access conditions
can be explained as follows. For every operation, we require that only the changed
program variables are actually modified by the operation. We require that only
the accessible program variables can have an influence on the outcome of an
operation. In fact, both conditions imply that operations depend only on finitely
many variables and can affect only finitely many variables.

We also write ⟨M,A⟩ for a logical machine model to indicate its underlying
structure A. A logical machine model is a failure-sensitive machine model in the
following sense: the state space of a logical machine model is the set of valuations
of A, and the given operationalization induces an operationalization for tests by
associating every quantifier-free formula ϕ to the set AJϕKCL that denotes the
valuations that satisfy ϕ in structure A.

The access and change conditions can be lifted to statements S.

Lemma B.4.3 (Change Lemma). Given a set of proper states X,

X ≡ ⟨M,A⟩JSK(X) mod change(S).

Lemma B.4.4 (Access Lemma). Given two sets of proper states X,Y such that
X ≡ Y mod (V \ access(S)), then

⟨M,A⟩JSK(X) ≡ ⟨M,A⟩JSK(Y) mod (V \ var(S)).

Intuitively, these express that a program only modifies the variables change(S),
and that the outcome of a program is only dependent on the variables access(S).

We now formally define whether a program specification is satisfied in a logical
machine model. Note that, contrary to our earlier discussion, there is a mismatch
in the denotation of formulas and the sets of (proper or improper) states: formulas
never denote the improper state fail. Thus we have a stronger interpretation for
program specifications, called strong partial correctness, defined as such:

⟨M,A⟩ |=HL {ϕ} S {ψ} if and only if ⟨M,A⟩JSK(AJϕKCL) ⊆ AJψKCL.

Since fail is never in AJψKCL, this interpretation explicitly states that the machine
never fails when executing program S starting from any state in AJϕKCL. Note that
the superscript HL (short for Hoare’s Logic) is used to be able to distinguish this
interpretation from the one introduced in the next chapter, but may be dropped if
it is clear from context what interpretation is intended.

It is useful to restrict our attention to particular logical machine models, that
are based on a structure that satisfies a particular theory. There are two levels at
which we recognize theories: background theories and program theories. Let T be a
set of first-order formulas, called a background theory. We write |=HL

T {ϕ} S {ψ} to
mean ⟨M,A⟩ |=HL {ϕ} S {ψ} for every logical machine model ⟨M,A⟩ such that

180 APPENDIX B. HOARE’S LOGIC

A |=CL T . We then say that the program specification is valid relative to the
given background theory. We write |=HL {ϕ} S {ψ} if the program specification is
valid in every logical machine model, regardless of background theory, and call it
universally valid.

Let Γ be a set of program specifications, called a program theory. We write
Γ |=HL

T {ϕ} S {ψ} to mean ⟨M,A⟩ |=HL {ϕ} S {ψ} for every structure A such
that A |=CL T and every logical machine model ⟨M,A⟩ such that ⟨M,A⟩ |=HL

{ϕ′} S′ {ψ′} for each {ϕ′} S′ {ψ′} ∈ Γ. We then say that the program specification
{ϕ} S {ψ} is a semantic consequence of Γ with respect to the background theory T .
The notion Γ |=HL {ϕ} S {ψ}, that {ϕ} S {ψ} is a semantic consequence of Γ, can
be defined (regardless of the background theory) in a similar way.

It is sufficient to focus on the semantic consequence relation, regardless of
the background theory, by the following argument. Observe that the program
specification {⊤} skip {ϕ} is satisfied in a logical machine model ⟨M,A⟩ if and only
if ⟨M,A⟩JskipK(AJ⊤KCL) ⊆ AJϕKCL if and only if AJϕKCL is the set of all proper
states if and only if A |=CL ϕ. Hence, every formula ϕ in the background theory can
be represented by the program specification {⊤} skip {ϕ}. Let T be a background
theory, and T ′ be the corresponding set of program specifications in which we
represent each formula ϕ ∈ T as a program specification {⊤} skip {ϕ} ∈ T ′. Then
we have Γ |=HL

T {ϕ} S {ψ} if and only if Γ ∪ T ′ |=HL {ϕ} S {ψ}. For notational
convenience, we simply work with formulas instead of their representations as
program specifications. Hence, we merge the notions of background theory and
program theory, and simply speak of a theory, being a set of program specifications
or formulas. Every theory has projections to its underlying background theory and
program theory.

We introduce a proof system in which program specifications can be deduced.
The purpose of using a proof system is that we can effectively check the deduction
of program specifications. The proof system is set-up as a proof system with
premises. Typically, we take the background theory as premises, from which we
can derive program specifications. Our proof system is called Hoare’s logic, or HL
in short, in honor of C.A.R. Hoare (but, as mentioned in Section 1.4, the proof
system given below is by K.R. Apt and F.S. de Boer).

Definition B.4.5. The proof system HL consists of:

• program specifications or formulas of first-order logic as objects,

• the smallest deduction relation ⊢HL satisfying the conditions:

(skip) ⊢HL {ϕ} skip {ϕ},
(halt) ⊢HL {ϕ} halt {false},
(assign) ⊢HL {ϕ[x := y]} x := y {ϕ},
(comp) {ϕ} S1 {ψ}, {ψ} S2 {χ} ⊢HL {ϕ} S1;S2 {χ},
(if) {ϕ ∧ χ} S1 {ψ}, {ϕ ∧ ¬χ} S2 {ψ} ⊢HL {ϕ} if χ then S1 else S2 fi {ψ},
(while) {ϕ ∧ χ} S {ϕ} ⊢HL {ϕ} while χ do S od {ϕ ∧ ¬χ},

B.4. AXIOMATIC SEMANTICS 181

(conseq) (ϕ′ → ϕ), {ϕ} S {ψ}, (ψ → ψ′) ⊢HL {ϕ′} S {ψ′},
(subst) {ϕ} S {ψ} ⊢HL {ϕ[x := y]} S {ψ[x := y]} for x ̸∈ var(S), y ̸∈ change(S),

(invar) {ϕ} S {ψ} ⊢HL {ϕ ∧ χ} S {ψ ∧ χ} if FV (χ) ∩ change(S) = ∅,
(∃-intro) {ϕ} S {ψ} ⊢HL {∃xϕ} S {ψ} for x ̸∈ var(S) ∪ FV (ψ).

Note how only the consequence proof rule (conseq) uses formulas as premises.
Every deduction is a proof tree constructed in the usual way. Hence, a deduction
has only finitely many premises, being either formulas or program specifications.

Let Γ be a given theory. We can now formulate that the proof system satisfies
the following meta-theoretical property, relating the proof system to the semantic
consequence relation on program specifications.

Lemma B.4.6 (Soundness).

Γ ⊢HL {ϕ} S {ψ} implies Γ |=HL {ϕ} S {ψ}.

Proof. Generalized reflexivity and generalized transitivity holds for the strong
partial correctness interpretation too, by induction on the structure of the deduction.
We then verify the axioms: For (skip), we have |= {ϕ} skip {ϕ} regardless of Γ,
and this easily follows from the denotational semantics. Also for (halt), we have
|= {ϕ} halt {false} regardless of Γ, similar to skip. For (assign), every logical
machine model has a fixed interpretation of x := y, and thus we have the result by
the substitution lemma. We have that (comp) follows directly from the denotational
semantics. For the proof rule (if) we can perform a case distinction on whether
χ holds or not, and from {ϕ ∧ χ} S {ψ} we can obtain {ϕ} assert(χ);S {ψ} and
similar for the other case. For the proof rule (while) we can do loop unrolling, and
then observe that

∞⋃
k=0

⟨M,A⟩J(while χ do S od)kK(AJϕKCL) ⊆ AJϕ ∧ ¬χKCL

holds by considering that the following holds

⟨M,A⟩J(while χ do S od)kK(AJϕKCL) ⊆ AJϕKCL

for every k; the latter can be shown by induction on k and the premise. For
the proof rule (conseq) the result holds for logical machine models in which the
premises are satisfied.

The remaining rules can be proven sound, given the following intuition:

• In the substitution rule (subst) we make use of the access lemma to take
any computation from {ϕ} S {ψ} and change the initial state with respect
to variable x that is not occurring in S to obtain another computation (the
variable x can then not be overwritten by S). The value to assign to x is
the value of y, which must have the same value in the initial and final state
due to the change lemma. The specification then is satisfied by applying the
substitution lemma on the initial and final state.

182 APPENDIX B. HOARE’S LOGIC

• The invariance rule (invar) follows from the change lemma, where the de-
notation of χ depends entirely on its free variables, which values cannot
change.

• The ∃-introduction rule (∃-intro) follows from the access lemma, since the
value of x cannot have any effect on the computation of S nor determine the
denotation of ψ.

In fact, under suitable assumptions of the expressivity of the assertion language,
the converse can be stated as well. To do so, we introduce the notions of a weakest
precondition and strongest postcondition, relative to a given theory Γ.

Remark B.4.7. Since we have limited the variables that are changed, and every
program depends only on finitely many variables, it is possible to express the
weakest precondition (strongest postcondition) by a formula. These conditions
cannot be described by a (finite) formula if, for example, a primitive operation
would affect the value of infinitely many variables, or would depend on the value
of infinitely many variables. End of Remark.

Given a program S and formula ψ, let WPΓ(S, ψ) denote the weakest (liberal)
precondition, a formula with the following properties:

• Γ |=HL {WPΓ(S, ψ)} S {ψ},

• Γ |=HL {ϕ} S {ψ} implies Γ |= ϕ→ WPΓ(S, ψ),

• Γ |=HL WPΓ(skip, ψ) → ψ,

• Γ |=HL WPΓ(halt, ψ) → ⊥,

• Γ |=HL WPΓ(x := y, ψ) → ψ[x := y],

• Γ |=HL WPΓ(S1;S2, ψ) → WPΓ(S1,WPΓ(S2, ψ)),

• Γ |=HL WPΓ(if χ then S1 else S2 fi, ψ) →
(WPΓ(S1, ψ) ∧ χ) ∨ (WPΓ(S2, ψ) ∧ ¬χ),

• Γ |=HL WPΓ(while χ do S od, ψ) →
(χ→ WPΓ(S,WPΓ(while χ do S od, ψ))) ∧ (¬χ→ ψ).

Note that in some of these conditions we use formulas ϕ, such that Γ |= ϕ means
that for every logical machine model ⟨M,A⟩ that satisfies the theory Γ, we must
have that the formula ϕ is valid, that is, A |= ϕ. Whether a formula exists, that
can express the weakest precondition, is a property of the assertion language and
the given theory: not all choices of signatures and theories allow us to express such
weakest precondition as a formula.

There are some general properties that hold of the weakest precondition, as
defined above, that show that the weakest precondition is closely related to our
denotational semantics:

Proposition B.4.8. Γ |=HL WPΓ(S1,WPΓ(S2, ψ)) → WPΓ(S1;S2, ψ).

B.4. AXIOMATIC SEMANTICS 183

Proof. By definition of the weakest precondition, we have

Γ |=HL {WPΓ(S2, ψ)} S2 {ψ}

and
Γ |=HL {WPΓ(S1,WPΓ(S2, ψ))} S1 {WPΓ(S2, ψ)}.

By the soundness of the composition rule, we thus have

Γ |=HL {WPΓ(S1,WPΓ(S2, ψ))} S1;S2 {ψ}.

But from this, it follows that Γ |=HL WPΓ(S1,WPΓ(S2, ψ)) → WPΓ(S1;S2, ψ)
also from the definition of weakest precondition.

Other converses of the other properties of the weakest precondition given above
can be shown too: this establishes that we deal with equivalence and not merely
logical implications.

In fact, for a given logical machine model ⟨M,A⟩ we can precisely specify what
the weakest precondition denotes. A logical machine model fixes the background
theory Th1(A) by the choice of the underlying structure A, and furthermore fixes
the program theory Th(⟨M,A⟩) by the operationalization of M. So we can take as
theory Γ = Th1(A) ∪ Th(⟨M,A⟩). In this case we can simply speak of WP(S, ϕ),
dropping the subscript and instead take the theory induced by the given model.
Then, the weakest precondition is understood, semantically, to denote

AJWP(S, ψ)KCL = {ρ | ⟨M,A⟩JSK(ρ) ⊆ AJψKCL}

where ρ ranges over proper states (the valuations of A). Since our semantics denotes
the empty set for diverging programs, and the empty set is always included in any
set of proper states, we thus have a weakest liberal precondition in the sense that
we do not care about diverging computations.1 Note that in this setting, we are
able to distinguish a primitive operation leading to failure from an indeterminate
primitive operation: in the former case the weakest precondition is empty (since
fail is never contained in any set of proper states), whereas in the latter case the
weakest precondition is the set of all proper states (since the empty set is always
contained in any set of proper states).

Next, let NFΓ(S) denote a formula expressing the precondition so that compu-
tations of S do not lead to failure, and let SPΓ(ϕ, S) denote a formula expressing
the strongest postcondition, with the following properties:

• Γ |=HL {NFΓ(S) ∧ ϕ} S {SPΓ(ϕ, S)},

• Γ |=HL {ϕ} S {ψ} implies Γ |= SPΓ(ϕ, S) → ψ.

Note the asymmetry between the weakest precondition and the strongest postcon-
dition due to the failure-sensitive semantics: the strongest postcondition is only

1If liberal is not caring about getting stuck without making any progress, then progressive is
caring about making progress. But ‘weakest progressive precondition’ is terminology I invented.

184 APPENDIX B. HOARE’S LOGIC

given in the case the precondition excludes the possibility any computation leads
to failure.

Again, for a given logical machine model ⟨M,A⟩ we can precisely specify what
the non-failing formula and the strongest postcondition denotes. Since a particular
logical machine model induces a particular theory, we simply write NF (S) and
SP(ϕ, S), dropping the subscript. We can take

AJNF (S)KCL = {ρ | fail ̸∈ ⟨M,A⟩JSK(ρ)}

and note that, for deterministic machine models, NF (S) and WP(S, true) denote
the same set of proper states. We also can take

AJSP(ϕ, S)KCL = {ρ | ρ ∈ ⟨M,A⟩JSK(AJϕKCL)}

where we take all proper final states starting from a state in the given precondition.
Note that, for a non-deterministic program S, we may have that a particular given
ϕ possibly leads to failure but in a non-deterministic way. In that case, NF (S) is
empty, since the failure cannot be avoided. However, SP(ϕ,S) then could still be
non-empty for the computations that do not lead to failure, whereas SP(false, S)
is empty. Hence there is a difference between SP(ϕ,S) and SP(NF (S) ∧ ϕ,S).

We now show the relative completeness result, by using the weakest (liberal)
precondition. This completeness result is called relative since we have two assump-
tions: we assume the expressivity of the weakest precondition, and we assume that
every logical truth is contained in the theory. The latter assumption is quite strong
and may go beyond what is computable or even recursively enumerable, and hence
we refer to that latter assumption as if we have access to an oracle.

Lemma B.4.9 (Relative completeness). Given a theory Γ where the weakest liberal
precondition WPΓ(S, ψ) is expressible and Γ is maximally consistent (with respect
to the background theory), then

Γ |=HL {ϕ} S {ψ} implies Γ ⊢HL {ϕ} S {ψ}

for all formulas ϕ, ψ.

Proof. We assume Γ |=HL {ϕ} S {ψ}. The proof goes as follows: it suffices to
show that Γ ⊢HL {WPΓ(S, ψ)} S {ψ}, since we obtain the desired result by an
application of the consequence rule and the property that Γ |=HL ϕ→ WPΓ(S, ψ).
Since Γ is maximally consistent we can actually apply the consequence rule.

The proof is by induction on S. For primitive operations, the specification
must follow from Γ (otherwise it contradicts our assumption). The skip, halt, and
assignment operations follow from the properties of the weakest precondition.

For sequential composition, we apply the consequence rule (together with the
property of the weakest precondition that distributes over composition) and need
to show Γ ⊢HL {WPΓ(S1,WPΓ(S2, ψ))} S1;S2 {ψ}. This can be done by an
application of the composition rule, with WPΓ(S2, ψ) as intermediary formula, and
the induction hypotheses. The other complex statements are similar.

B.4. AXIOMATIC SEMANTICS 185

Summarizing, the completeness result depends essentially on the expressivity of
the weakest precondition. That this is crucial boils down to the following observa-
tion: if we know that Γ |=HL {ϕ} S1;S2 {ψ}, how can we find a description of the
possible intermediate states? The weakest precondition offers such a description.
Similarly, the weakest precondition describes the loop invariant in the case of the
while-statement. The fact that we need an oracle is secondary. In the case we deal
with finite structures, for which the background theory is complete, we also have
completeness of Hoare’s logic. For example, in the case of 32-bit signed integers,
the oracle can be effectively implemented by means of a decision procedure, and the
question whether a program specification is deducible is decidable as well. However,
there are background theories such as the theory of stacks, for which one can give
concrete programs where the loop invariant is non-expressible [133]. In that case,
having an oracle does not help in overcoming an inexpressive background theory.

From a proof-theoretic and model-theoretic point of view, the discussion of
completeness becomes more interesting. We know that there is a sound and
complete, finitary proof system for first-order logic. We can combine that proof
system with the proof system for Hoare’s logic: any proof needed in the consequence
rule can be provided by a deduction in the proof system for first-order logic. The
relative completeness result now no longer needs a background theory that is
maximally consistent (the oracle), since by the completeness of first-order logic we
already know that every semantic consequence (of the background theory) can be
deduced. In this case, it is important to keep in mind that program theories are
interpreted with a semantics of programs with respect to arbitrary structures that
satisfies the background theory. This, in fact, further shows that expressivity of
the weakest precondition is essential to the completeness result.

Nothing prevents us from taking one of the axiomatic set theories (such as
Zermelo-Fraenkel set theory [49], Quine’s New Foundations [85], Von Neumann–
Bernays–Gödel set theory [153], among others) as a background theory. The
resulting program logic is very expressive: we can specify very rich specifications
of programs. However, in that case, the relation with practical computing becomes
less clear, although even Dijkstra did not mind speaking about programs that work
on sets or real numbers.1 It is an interesting avenue to see what assumptions (such
as encodability, recursive enumerability, and decidability) are needed for modeling
the primitive operations and tests out of which a program is constructed. One
assumption, for example, could be that the value of every accessible or changed
program variable must have a digital encoding, so it can actually be represented in
the memory of a classical digital computer. However, alternative assumptions may
be needed for programs intended to be executed by quantum computers.

Note that we can also prove relative completeness using the strongest postcon-
dition, but we leave that as an exercise for the reader. Also note that we did not
need all proof rules in the (relative) completeness proof, but this changes after
introducing recursively defined procedures with parameters. For while-programs
it is in fact the case that the invariance rule, substitution rule, and ∃-introduction
rule are admissible. However, these rules are not derivable from the other rules.

1https://www.youtube.com/watch?v=GX3URhx6i2E

https://www.youtube.com/watch?v=GX3URhx6i2E

186 APPENDIX B. HOARE’S LOGIC

B.5 Recursive procedures
This section sketches how to extend our approach to recursive procedures with
parameters. The purpose is to demonstrate that the set-up of the axiomatic
semantics above naturally extends to giving a proof system for programs with
recursive procedures. We shall limit our formal development to outline the main
ideas, and instead refer readers to the journal article Completeness and Complexity
of Reasoning about Call-by-Value in Hoare Logic for all technical details [29].
However, the presentation given here is slightly more elegant than that of [29], due
to the use of program signatures.

The axiomatic semantics above naturally leads to a programming methodology
called design by contract [154, 18]. In essence, every operation of the program
can be assigned a contract that declares a precondition (which the caller of the
procedure needs to guarantee) and a postcondition (which the caller of the procedure
may assume to hold after the procedure terminates). We follow this methodology
in the design of a proof system that supports verifying programs with recursive
procedures.

Given a program signature. A recursive program (D | S) consists of a main
statement S and a set of declarations D. A declaration declares the meaning of
an operation of the program signature, by defining it in terms of a procedure body
which is a statement of our language. Operations that lack such a declaration
are so-called native operations. A native operation thus lacks a procedure body.
The set D associates to each operation at most one declaration. Declarations are
denoted as follows

O⟨x1, . . . , xn, y1, . . . , ym⟩ :: S.

The operation is annotated with a set of polarized variables, that indicate that
execution of the operation may access variables x1, . . . , xn and may change variables
y1, . . . , ym. In the context of a set D, we call an operation O for which there is a
declaration in D a procedure, and say it has procedure body S. Since the operations
are already fixed by the program signature, they can occur in statements, including
the main statement.

Intuitively, a procedure body should only access and change the variables as
declared. A recursive program is well-formed if for all procedures O with body S,
we have access(S) ⊆ access(O) and change(S) ⊆ change(O).
Example B.5.1. Given a program signature which has the operations Z, S, P , +,
and the test Z? that accesses variable x. The following procedure declarations D:

Z⟨z⟩ :: native

S⟨x, z⟩ :: native

P ⟨x, z⟩ :: native

+⟨x, y, z, w, x, y, z, w⟩ :: if Z?(x) then z := y else

P ;w := z;x := y;S; y := z;x := w; +

fi

B.5. RECURSIVE PROCEDURES 187

and main statement + forms the recursive program (D | +). The intended data
structure is that of the natural numbers. The intuition is that Z resets the variable
x to the value 0, S computes the successor of the value in x and stores that in z, P
computes the predecessor of the value in x and stores it in z (and if x is 0 it does
not terminate). We are then able to give the procedure body of + that computes
the addition of the values in x and y and stores the result in z. End of Example.

For notational convenience, one may leave out the access and change variables
in procedure declarations, since the smallest sets of polarized variables can be
computed for a given set of declarations. Hence, we shall not write these variable
annotations anymore.

Up to now all variables are global, in the sense that the same variable in every
context refers to the same ‘storage location’. We extend the programming language
with a block statement for introducing local variables, which allow us to temporarily
change the value of a variable within the scope of the block. As such, the statements
are extended to include the complex block statement

S ::= . . . | begin local x⃗ := y⃗;S end

where x⃗ and y⃗ are sequences of variables of the same length, and x⃗ consists of
unique variables. The variables of x⃗ are local variables within the scope of the
block. We also extend the definitions of access and change as follows:

access(begin local x⃗ := y⃗;S end) = (access(S) \ x⃗) ∪ y⃗,
change(begin local x⃗ := y⃗;S end) = change(S) \ x⃗.

From the perspective of operational semantics, there is a problem with giving
the block statement a small-step semantics. The small-step semantics is in a sense
a ‘local’ semantics, which transforms the statement and state one step at a time.
However, the intended semantics is that after the block is exited, the values of the
local variables have to be restored to their original value, that is, at the time before
entering the block statement. A possible solution is to keep track of the original
values in the state by means of a stack, to which values can be pushed, and from
which original values can be popped. In that way, the block construct can be seen
as a structured short-hand of a program in a block program signature, where the
original value of each local variable is first pushed, then the parallel assignment is
performed, and after the block ends the original values are popped again in reverse
order.

For logical machine models, the big-step semantics of the block statement can
be given directly, i.e. without pushing and popping, by the following transition:

(begin local x⃗ := y⃗;S end, s) −↠ (✓, s′[x⃗ := s(x⃗)]) if (S, s[x⃗ := y⃗]) −↠ (✓, s′)

(begin local x⃗ := y⃗;S end, s) −↠ fail if (S, s[x⃗ := y⃗]) −↠ fail

where we have parallel update of, and parallel access from, proper states s (being
valuations of the underlying structure). These are denoted s[x⃗ := v⃗] for the updated
state where v⃗ is a sequence of new values (of the same length as x⃗), and s(x⃗) for a

188 APPENDIX B. HOARE’S LOGIC

sequence of values that the variables of x⃗ have in state s, respectively. Without
much difficulty it is also possible to extend the denotational semantics in a similar
way.

Having local variables and block statements allows us to introduce procedures
with parameters. In the signature, for each operation O we also record its arity
(being a set of variables), denoted arity(O). Consequently, we extend the notion of
declarations to display the arity of operations as follows:

O(x1, . . . , xn) :: S,

where x1, . . . , xn are distinct variables, exactly covering arity(O), called the formal
parameters of the operation O. The difference between the arity of an operation,
and the formal parameters of an operation is that in the latter the order of variables
is significant. (Note that the signature still assigns polarized variables to each
operation, indicating the potentially accessible and changed variables, but they are
left implicit in declarations.) The formal parameters are local to the procedure
body, and thus are never included in the variables that are potentially accessed or
changed: the latter variables are global variables that are not among the formal
parameters. As such, we require that arity(O) and access(O) are disjoint, as well
as arity(O) and change(O).

Further, we have the following call statement:

S ::= . . . | O(y1, . . . , yn)

where y1, . . . , yn are the actual parameters supplied as part of the call, where we
assume O has the arity x⃗, and y⃗ and x⃗ of equal length. It is permissible that
the actual parameters y⃗ have duplicate variables, while this is not the case for
the formal parameters x⃗. We speak of a procedure call in the context of a set of
declarations if the corresponding operation is a procedure, and otherwise speak of
a native call. We also extend the definitions of access and change as follows:

access(O(y⃗)) = access(O) ∪ y⃗,
change(O(y⃗)) = change(O).

Intuitively, a procedure body should only access and change the variables as
declared, but it is permissible to access and change the formal parameters. A
recursive program is well-formed if for all procedures O with body S, we have
(access(S) \ arity(O)) ⊆ access(O) and (change(S) \ arity(O)) ⊆ change(O).

In fact, procedures without parameters can be regarded as procedures with zero
parameters, that have an empty arity. The notions defined with parameters thus
are a refinement of the former notions without parameters.

To give semantics to recursive programs, we lift the semantics of statements
to a semantics of (well-formed) recursive programs by also considering the set of
declarations in each configuration. The big-step semantics of the procedure call
then is defined by the transition

(D | O(y⃗), s) −↠ C if (D | begin local x⃗ := y⃗;S end, s) −↠ C

B.5. RECURSIVE PROCEDURES 189

where O(x⃗) :: S is in the set of declarations D. We have that x⃗ and y⃗ match
in length, because the actual parameters and arity of an operation match in
length and also that the formal parameters gives an order of the variables of the
arity. This style of operational semantics is also called body replacement, since
intuitively we replace the procedure call by the body of the procedure wrapped in a
block statement. We here restrict ourselves to the call-by-value parameter passing
mechanism, meaning that the values of actual parameters are computed before
starting to execute the procedure body. This is in contrast to call-by-name where
we would have to perform substitution of formal parameters by actual parameters
in the procedure body, resulting in a different replacement for each procedure call
with different actual parameters, and requires handling variable capturing by block
statements. Note that the behavior of a native call is left unspecified, and as such
can be interpreted by the operationalization of a machine model.

The denotational semantics can be given iteratively. This is similar to how we
previously gave a denotational semantics to while-statements. We leave the details
out and instead refer the reader to [29]. What is more important concerning our
discussion is the proof system for recursive programs.

Procedures return values by the use of a global variables (that can be changed).
It is possible to designate a special variable, called result, that cannot occur as a
formal parameter of any procedure declaration, and to which the procedure may
assign an output value in the procedure body. For procedure declarations that
have the result variable listed among its changed variables, we can introduce the
following abbreviation:

x := O(y⃗)

which denotes the statement

O(y⃗);x := result.

Since we have introduced blocks that allow us to introduce local variables, we can
also introduce the following syntactic sugar. An expression e is constructed out
of either an individual variable, or a procedure call with as formal parameters
other expressions (matching in length the number of formal parameters of the
corresponding operation). For example, O(P (x, y), z,Q(w)) is an expression given
operations O,P,Q and variables x, y, z, w. Each expression O(e1, . . . , en) abbrevi-
ates a statement. If all expressions e1, . . . , en are variables then O(e1, . . . , en) is
simply a procedure call with the corresponding variables as actual parameters. Oth-
erwise, let ei be the first non-variable expression from the left, then O(e1, . . . , en)
abbreviates the following statement:

ei;begin local zi := result;O(e1, . . . , zi, . . . , en) end

and the statement x := O(e1, . . . , en) abbreviates

O(e1, . . . , en);x := result.

where we take z1, . . . , zn to be fresh variables (i.e. not occurring in any of the
sub-expressions, nor in accessible or changed variables of the operation). Note

190 APPENDIX B. HOARE’S LOGIC

that this effectively evaluates the expressions from the left to the right, storing the
result of each sub-expression in a local variable. Also note that the abbreviation is
recursively defined.

Note the resemblance between terms (in the assertion language) and expressions
(in the programming language). Terms can be added to a logic without terms,
by the introduction of an existential quantifier that binds the output value that
are assigned to inputs by a functional relation. In that way, terms can be used in
the place of variables. Similarly, we use local variables to capture the output of
an expression so that, as well, expressions can be used in the place of variables.
However, note that with expressions we also defined a so-called order of evaluation,
by evaluating the expressions from left to right. The reason to do so, and why this is
not needed in the assertion language, is because expressions can have side-effects on
global variables, which consequently affect the evaluation of subsequent expressions.

Also note that the programming language as described above employs dynamic
scoping. This means that a global variable can be captured by the use of a block
statement, to isolate the effects of procedures. We say that a program is statically
scoped if the local variables and global variables are separated, thus disallowing
capturing of global variables and ensuring that the referent of a global variable
remains the same in every context. This may remind the reader of Barendregt’s
variable convention, in which bound and free variables are separate. See also the
discussion of local variables by K.R. Apt and E.-R. Olderog [11, Section 5.2].

Finally, we consider extending the proof system HL with rules for proving
properties about block statements and procedure calls. The objects of the proof
system remain Hoare triples {ϕ} S {ψ} in which we are oblivious of the set of dec-
larations in the proof system. We furthermore add the Hoare triples {ϕ} D | S {ψ}
for specifying (well-formed) recursive programs (D | S).

We have the following additional proof rules:

(block) {ϕ[x⃗ := y⃗]} S {ψ} ⊢HL {ϕ} begin local x⃗ := y⃗;S end {ψ} if FV (ψ) ∩ x⃗ = ∅,

(inst) {ϕ} O(x⃗) {ψ} ⊢HL {ϕ[x⃗ := y⃗]} O(y⃗) {ψ} if FV (ψ) ∩ x⃗ = ∅,

(rec) If Γ,∆ ⊢HL {ϕi} Si {ψi} for every 1 ≤ i ≤ n and Γ,∆ ⊢HL {ϕ} S {ψ}, then
Γ ⊢HL {ϕ} D | S {ψ} where D = {O1(x⃗1) :: S, . . . , On(x⃗n) :: Sn}
and ∆ = {{ϕ1} O1(x⃗1) {ψ1}, . . . , {ϕn} On(x⃗n) {ψn}}
and FV (ψi) ∩ x⃗i = ∅ for every 1 ≤ i ≤ n.

Recall that ϕ[x⃗ := y⃗] is the substitution of the variables x⃗ by the corresponding
variables y⃗. The specifications in ∆ are called contracts, and we require that
the formal parameters of each procedure do not occur in the postcondition of
the contract. The difference between Γ and ∆ is that Γ consists of the program
theory and background theory, used for axiomatizing the native operations and
the underlying structure, whereas ∆ introduces contracts for the procedures which
have a procedure body.

It is now possible to formulate both soundness and (relative) completeness
for recursive programs too. The essence of the relative completeness proof is to
introduce most general contracts for each procedure, making use of a strongest

B.5. RECURSIVE PROCEDURES 191

postcondition axiomatization in the line of Gorelick [96]. We refer the reader to
[29] for more details.

Remark B.5.2. These rules are admissible in Hoare’s logic: every local block can
be eliminated by introducing fresh variables (that do not occur in any surrounding
program), and recursive procedures can be eliminated and reduced to simple while
loops. However, showing why this is the case in detail is out of scope of this thesis.

192 APPENDIX B. HOARE’S LOGIC

Appendix C

Intuitionistic separation logic

C.1 Standard semantics

Definition C.1.1 (Satisfaction relation). f Given a structure A = (A, I), a
valuation ρ of A, a finite heap h of A, and a separation logic formula ϕ. The
satisfaction relation A, h, ρ |=SISL ϕ is defined inductively on the structure of ϕ:

• A, h, ρ |=SISL ⊥ never holds,

• A, h, ρ |=SISL (x
.
= y) iff ρ(x) = ρ(y),

• A, h, ρ |=SISL (x ↪→ y) iff h(ρ(x)) is defined and h(ρ(x)) = ρ(y),

• A, h, ρ |=SISL C(x1, . . . , xn) iff (ρ(x1), . . . , ρ(xn)) ∈ CI ,

• A, h, ρ |=SISL ϕ→ ψ iff A, h′, ρ |=SISL ϕ implies A, h′, ρ |=SISL ψ
for every h′ ⊇ h,

• A, h, ρ |=SISL ∀xϕ iff A, h, ρ[x := a] |=SISL ϕ for every a ∈ A,

• A, h, ρ |=SISL ϕ ∗ ψ iff A, h1, ρ |=SISL ϕ and A, h2, ρ |=SISL ψ
for some h1, h2 such that h ≡ h1 ⊎ h2,

• A, h, ρ |=SISL ϕ −∗ ψ iff A, h′, ρ |=SSL ϕ implies A, h′′, ρ |=SISL ψ
for every h′, h′′ such that h′′ ≡ h ⊎ h′.

This definition is based on finite heaps. SISL stands for Standard Intuitionistic
Separation Logic. It crucially differs from SSL in the clause for logical implication.
Note that the pure fragment of separation logic still is interpreted classically, since
pure formulas do not depend on the heap. The definition above can be adapted
to obtain full intuitionistic separation logic, and general intuitionistic separation
logic, in a similar manner as before.

193

194 APPENDIX C. INTUITIONISTIC SEPARATION LOGIC

C.2 Intuitionistic Reynolds’ logic

In the intuitionistic version of separation logic we cannot express directly anymore
that a location x is not allocated. The definition of the substitution p[⟨x⟩ := e] and
p[⟨x⟩ := ⊥], and the above alt-backwards axiomatization of mutation, allocation and
dispose instructions therefore breaks down. We can use new modalities [[x] := e]
and [x] := ⊥] corresponding to the mutation and the dispose instruction. Differently
from the heap update operation and the heap clear operation, correctness of the
modalities [[x] := e] and [[x] := ⊥] require that x is allocated. In ISL we then
can define the heap update substitution p[⟨x⟩ := e] by (x ↪→ −) → p[[x] := e], as
explained in details below.

Further note, that we indeed can use in the allocation axiom disjunction
(instead of the intuitionistic implication) because of its classic interpretation (this
is explained in the soundness and completeness proof below).

Definition C.2.1 (Substitution for mutation). We define p[[x] := e] recursively
on p (assuming the variables of e and x do not occur bound in p).

• b[[x] := e] = b,

• (e′ ↪→ e′′)[[x] := e] = (x ̸= e′ ∧ e′ ↪→ e′′) ∨ (x = e′ ∧ e′′ = e),

• (p ∧ q)[[x] := e] = p[[x] := e] ∧ q[[x] := e], and similar for ∨ and →,

• (∃yp)[[x] := e] = ∃y(p[[x] := e]) and similar for ∀,

• (p ∗ q)[[x] := e] = ((p[[x] := e] ∧ x ↪→ −) ∗ q) ∨ (p ∗ (q[[x] := e] ∧ x ↪→ −))

• (p −∗ q)[[x] := e] = p −∗ (q[[x] := e])

Lemma C.2.2 (Correctness mutation substitution). Let s(x) ∈ dom(h). We then
have h, s |= p[[x] := e] iff h[s(x) := s(e)], s |= p.

Proof. The proof proceeds by induction on the structure of p. We treat the following
main cases.

• h, s |= (p→ q)[[x] := e] iff (definition substitution)
h, s |= p[[x] := e] → q[[x] := e] iff (semantics implication)
h′, s |= p[[x] := e] implies h′, s |= q[[x] := e], for all h′ such that h ⊑ h′

iff (induction hypothesis)
h′[s(x) := s(e)], s |= p implies h′[s(x) := s(e)], s |= q, for all h′ such that
h ⊑ h′

iff (see below)
h′, s |= p implies h′, s |= q, for all h′ such that h[s(x) := s(e)] ⊑ h′

iff (semantics implication)
h[s(x) := s(e)], s |= p→ q
Note that h[s(x) := s(e)] ⊑ h′ implies h′[s(x) := h(s(x))] = h′, and h ⊑ h′

implies h[s(x) := s(e)] ⊑ h′[s(x) := s(e)].

C.2. INTUITIONISTIC REYNOLDS’ LOGIC 195

• h, s |= (p ∗ q)[[x] := e]
iff (definition substitution)
h, s |= (x ↪→ −) → ((p[[x] := e] ∧ x ↪→ −) ∗ q) ∨ (p ∗ (q[[x] := e] ∧ x ↪→ −))
iff (see below)
h[s(x) := s(e)], s |= p ∗ q.
⇓: First, let s(x) ∈ dom(h). W.l.o.g. we may assume that h = h1 ⊎ h2,
h1, s |= p[[x] := e], and h2, s |= q, for some h1, h2 such that s(x) ∈ dom(h1).
Induction hypothesis: h1[s(x) := s(e)], s |= p. Further: h[s(x) := s(e)] =
h1[s(x) := s(e)] ⊎ h2. Next, let s(x) ̸∈ dom(h). Let h′ = h[s(x) := n],
for some arbitrary n. Again, w.l.o.g. we may assume that h′ = h1 ⊎ h2,
h1, s |= p[[x] := e], and h2, s |= q, for some h1, h2 such that s(x) ∈ dom(h1).
Induction hypothesis: h1[s(x) := s(e)], s |= p. Further: h′[s(x) := s(e)] =
h[s(x) := s(e)] = h1[s(x) := s(e)] ⊎ h2.
⇑: Let h[s(x) := s(e)] = h1 ⊎ h2 such that h1, s |= p and h2, s |= q. W.l.o.g.,
assume that s(x) ∈ dom(h1). Further , let h ⊑ h′. Let h′1 = h′ \ h2. It
follows that h′ = h′1 ⊎ h2. Monotonicity: h′1, s |= p. Induction hypothesis:
h′1, s |= p[[x] := e] (note that h′1[s(x) := s(e)] = h′1).

• h, s |= (p −∗ q)[[x] := e]
iff (definition of substitution)
h, s |= (x ↪→ −) → (p −∗ (q[[x] := e])) iff (semantics intuitionistic and
separating implication)
h′, s |= p implies h⊎h′, s |= q[[x] := e], for every h ⊆ h′, with s(x) ∈ dom(h′),
and h′′ disjoint from h′

iff (induction hypothesis)
h′′, s |= p implies (h′ ⊎ h′′)[s(x) := s(e)], s |= q, for every h ⊆ h′, with
s(x) ∈ dom(h′), and h′′ disjoint from h′

iff (see below)
h′, s |= p implies h[s(x) := s(e)] ⊎ h′, s |= q, for every h′ disjoint from
h[s(x) := s(e)]
iff (semantics of separating implication)
h[s(x) := s(e)], s |= p −∗ q.
⇓: First, let s(x) ̸∈ dom(h). So h ⊑ h[s(x) := s(e)], and we can take
h[s(x) := s(e)] for h′. Next, let s(x) ∈ dom(h). So it suffices to observe that
h′′#h implies h′′#h[s(x) := s(e)].
⇑: let h ⊆ h′, with s(x) ∈ dom(h′), and h′′ disjoint from h′ such that
h′′, s |= p. Clearly, h′′ is disjoint from h[s(x) := s(e)], and thus we have
that h[s(x) := s(e)] ⊎ h′′, s |= q, that is, (h ⊎ h′′)[s(x) := s(e)], s |= q. We
further have that (h ⊎ h′′)[s(x) := s(e)] ⊑ (h;⊎h′′)[s(x) := s(e)], and so by
monotonicity, we conclude that (h′ ⊎ h′′)[s(x) := s(e)], s |= q.

Corollary C.2.3 (Correctness intuitionistic heap update).
We have h, s |= p[⟨x⟩ := e] iff h[s(x) := s(e)], s |= p.

Proof. First let h, s |= p[⟨x⟩ := e], that is (by definition), h, s |= (x ↪→ −) →
p[[x] := e]. Let h′ = h, if s(x) ∈ dom(h), and h′ = h[s(x) := n], for some arbitrary
n, otherwise. So h ⊑ h′, and thus we infer from h, s |= (x ↪→ −) → p[[x] := e] that

196 APPENDIX C. INTUITIONISTIC SEPARATION LOGIC

h′, s |= p[[x] := e], and so by the correctness of the mutation substitution, we have
h′[s(x) := s(e)], s |= p, that is, h[s(x) := s(e)], s |= p.

On the other hand, assuming h[s(x) := s(e)], s |= p, let h ⊆ h′ such that
s(x) ∈ dom(h′). We show that h′, s |= p[[x] := e]: By the monotonicity property
of ISL we have that h[s(x) := s(e)], s |= p implies h′[s(x) := s(e)], s |= p. By
the correctness of the mutation substitution, it then suffices to observe that
h′, s |= p[[x] := e] if and only if h′[s(x) := s(e)], s |= p.

For the intutitionistic axiomatization of the dispose instruction we introduce
the following substitution.

Definition C.2.4 (Substitution for dispose). We define p[[x] :=⊥] recursively on
p (assuming that x does not occur bound in p).

• b[[x] :=⊥] = b

• (e ↪→ e′)[[x] :=⊥] = x ̸= e ∧ e ↪→ e′

• (p ∧ q)[[x] :=⊥] = p[[x] :=⊥] ∧ q[[x] :=⊥], and similar for ∨

• (p→ q)[[x] :=⊥] = (p[[x] :=⊥] → q[[x] :=⊥]) ∧ ∀y(p[[x] := y] → q[[x] := y])
where y is a fresh variable

• (∃yp)[[x] :=⊥] = ∃y(p[[x] :=⊥])

• (p ∗ q)[[x] :=⊥] = (p[[x] :=⊥] ∧ (x ↪→ −)) ∗ q

• (p −∗ q)[[x] :=⊥] = (p −∗ q[[x] :=⊥]) ∧ ∀y(p[⟨x⟩ := y] −∗ q[⟨x⟩ := y])
where y is a fresh variable.

Determining whether p ∗ q holds after disposing x, we predict whether p or q
holds for the sub-heap that contained the disposed x. Since the dispose instruction
[x] :=⊥ requires that x is allocated, we distinguish between between these two
cases by checking in which part of the heap x is allocated. But since after the
dispose instruction both p and q are evaluated in sub-heaps which do not contain
the location x, we can choose between where to allocate x initially. Formally, the
assertions (p[[x] :=⊥] ∧ (x ↪→ −)) ∗ q and (q[[x] :=⊥] ∧ (x ↪→ −)) ∗ p are equivalent.
For example, we that true ∗ (x ↪→ y) does not hold after execution of [x] :=⊥. By
definition (true ∗ (x ↪→ y))[[x] :=⊥] reduces to (true ∧ x ↪→ y) ∗ (x ↪→ y), which
further reduces to false. On the other hand, ((x ↪→ y) ∗ true)[[x] :=⊥] reduces
to (x ̸= x ∧ (x ↪→ −)) ∗ true, which further reduces to false ∗ true, which also is
equivalent to false.

Lemma C.2.5 (Correctness dispose substitution). Let s(x) ∈ dom(h). We then
have h, s |= p[[x] :=⊥] if and only if h[s(x) := ⊥], s |= p.

Proof. The proof proceeds by induction on the structure of p. We treat the following
main cases.

C.2. INTUITIONISTIC REYNOLDS’ LOGIC 197

• h, s |= (p→ q)[[x] :=⊥] iff (definition of substitution)
h, s |= (p[[x] :=⊥] → q[[x] :=⊥]) ∧ ∀y(p[[x] := y] → q[[x] := y])
iff (see below)
h[s(x) :=⊥], s |= p→ q.
First we show that h[s(x) :=⊥] ⊑ h′ and h′, s |= p implies h′, s |= q. We
distinguish the following two cases. First let s(x) ̸∈ dom(h′). It follows
that h′[s(x) := h(s(x))], s |= p[[x] :=⊥] (by the induction hypothesis we
have h′[s(x) := h(s(x))], s |= p[[x] :=⊥] if and only if h′, s |= p). Since
h ⊑ h′[s(x) := h(s(x))] we thus derive from h, s |= (p[[x] :=⊥] → q[[x] :=⊥])
that h′[s(x) := h(s(x))], s |= q[[x] :=⊥], and so by the induction hypothesis
again we obtain h′, s |= q.

Next let s(x) ∈ dom(h′). From h′, s |= p, it follows from the correctness of
the mutation substitution that h′[s(x) := h(s(x))], s′ |= p[[x] := y], where
s′ = s[y := h′(s(x))] (since y does not appear in p and x ̸= y). Since
h ⊑ h′[s(x) := h(s(x))] we thus derive from h, s′ |= p[[x] := y] → q[[x] := y]
that h′[s(x) := h(s(x))], s′ |= q[[x] := y], and so by the correctness of the
mutation substitution again we obtain h′, s′ |= q, that is, h′, s |= q (since y
does not appear in q).

Conversely, let h[s(x) :=⊥], s |= p→ q. First we show that h, s |= p[[x] :=⊥
] → q[[x] :=⊥]. Let h ⊑ h′ and h′, s |= p[[x] :=⊥], and so by the induction
hypothesis h′[s(x) :=⊥], s |= p. We have to show that h′, s |= q[[x] :=⊥]. By
the induction hypothesis (s(x) ∈ dom(h) ⊆ dom(h′)) it suffices to show that
h′[s(x) :=⊥], s |= q. Since h[s(x) :=⊥] ⊑ h′[s(x) :=⊥] and h′[s(x) :=⊥], s |= p
we thus derive from h[s(x) :=⊥], s |= p→ q that h′[s(x) :=⊥], s |= q.

Next we show that h, s |= ∀y(p[[x] := y] → q[[x] := y]). Let h ⊑ h′ and
h′, s′ |= p[[x] := y], where s′ = s[y := n], for some arbitrary n. We have
to show that h′, s′ |= q[[x] := y] which by the correctness of the mutation
substitution boils down to h′[s(x) := n], s |= q. By the correctness of
the mutation substitution again we have h′, s′ |= p[[x] := y] if and only if
h′[s(x) := n], s′ |= p. Since h[s(x) :=⊥] ⊑ h′[s(x) := n] we thus derive from
h[s(x) :=⊥], s |= p → q and h′[s(x) := n], s′ |= p that h′[s(x) := n], s |= q
(since y does not occur in p and q).

• h, s |= (p ∗ q)[[x] :=⊥] iff (definition substitution)
h, s |= (p[[x] :=⊥] ∧ x ↪→ −) ∗ q iff (semantics separating conjunction)
h1, s |= p[[x] :=⊥]∧x ↪→ − and h2, s |= q, for some h1, h2 such that h = h1⊎h2
iff (semantics of points-to) h1, s |= p[[x] :=⊥] and h2, s |= q, for some h1, h2
such that s(x) ∈ dom(h1) and h = h1 ⊎ h2
iff (induction hypothesis)
h1[s(x) :=⊥], s |= p and h2, s |= q, for some h1, h2 such that s(x) ∈ dom(h1)
and h = h1 ⊎ h2
iff (see below)
h1, s |= p and h2, s |= q, for some h1, h2 such that h = h1 ⊎ h2
iff (semantics separating conjunction)
h[s(x) :=⊥], s |= p ∗ q. Note that s(x) ∈ dom(h1) and h = h1 ⊎ h2 implies

198 APPENDIX C. INTUITIONISTIC SEPARATION LOGIC

h[[x] :=⊥] = h1[s(x) :=⊥] ⊎ h2, and h[[x] :=⊥] = h1 ⊎ h2 implies that
h = h1[s(x) := h(s(x))] ⊎ h2.

• h, s |= ((p −∗ q)[[x] :=⊥]
iff (definition substitution)
h, s |= (p −∗ q[[x] :=⊥]) ∧ ∀y(p[⟨x⟩ := y] −∗ q[⟨x⟩ := y])
iff (see below)
h[s(x) :=⊥], s |= p −∗ q.
First let h′ be disjoint from h[s(x) :=⊥] and h′, s |= p. We have to show that
h[s(x) :=⊥] ⊎ h′, s |= q. We distinguish the following two cases.

First, let s(x) ̸∈ dom(h′). So h′ and h are disjoint, and thus (since h, s |=
p −∗ q[[x] :=⊥]) we have h ⊎ h′, s |= q[[x] :=⊥]. From which we derive
(h ⊎ h′)[s(x) :=⊥], s |= q by the induction hypothesis (note that s(x) ∈
dom(h) ⊆ dom(h ⊎ h′)). We then can conclude this case by the observation
that h[s(x) :=⊥] ⊎ h′ = (h ⊎ h′)[s(x) :=⊥].

Next, let s(x) ∈ dom(h′). We then introduce s′ = s[y := h′(s(x))]. Since
h′, s′ |= p (y does not appear in p), it follows by the correctness of the intu-
itionistic heap update (see above corollary) that h′[s(x) :=⊥], s′ |= p[⟨x⟩ := y].
Since h′[s(x) :=⊥] and h are disjoint (which clearly follows from that h′ and
h[s(x) :=⊥] are disjoint), and so (since h, s′ |= p[⟨x⟩ := y] −∗ q[⟨x⟩ := y]) we
have that h ⊎ (h′[s(x) :=⊥]), s′ |= q[⟨x⟩ := y]. Applying again the correct-
ness of the intuitionistic heap update we obtain (h ⊎ (h′[s(x) :=⊥]))[s(x) :=
s′(y)], s′ |= q. We then can conclude this case by the assumption that y does
not appear in q and the observation that h[s(x) :=⊥]⊎h′ = (h⊎ (h′[s(x) :=⊥
]))[s(x) := s′(y)].

Conversely, let h[s(x) :=⊥], s |= p −∗ q. We first show that h, s |= p −∗
q[[x] :=⊥]: Let h′ be disjoint from h and h′, s |= p. We have to show that
h ⊎ h′, s |= q[[x] :=⊥]. Clearly, h′ and h[s(x) :=⊥] are disjoint, and so (since
h[s(x) :=⊥], s |= p −∗ q) h[s(x) :=⊥]⊎ h′, s |= q. By the induction hypothesis
(note that s(x) ∈ dom(h) ⊆ dom(h ⊎ h′)) we have h ⊎ h′, s |= q[[x] :=⊥] iff
(h ⊎ h′)[s(x) :=⊥], s |= q. We then can conclude this case by the observation
that (h⊎ h′)[s(x) :=⊥] = h[s(x) :=⊥] ⊎ h′, because s(x) ∈ dom(h) \ dom(h′).

Next we show that h, s |= ∀y(p[⟨x⟩ := y] −∗ q[⟨x⟩ := y]): Let h′ be disjoint
from h and s′ = s[y := n], for some n, such that h′, s′ |= p[⟨x⟩ := y].
We have to show that h ⊎ h′, s′ |= q[⟨x⟩ := y]. By the correctness of the
intuitionistic heap update it then follows that h′[s(x) := n], s′ |= p, that is,
h′[s(x) := n], s |= p (since y does not appear in p). Since h′[s(x) := n] and
h[s(x) :=⊥] are disjoint, we derive from the assumption h[s(x) :=⊥], s |=
p −∗ q that h[s(x) :=⊥] ⊎ h′[s(x) := n], s |= q. Again by the correctness
of the intuitionistic heap update, we have that h ⊎ h′, s′ |= q[⟨x⟩ := y] iff
(h ⊎ h′)[s(x) := n], s′ |= q (that is, (h ⊎ h′)[s(x) := n], s |= q, because y does
not appear in q). We then can conclude this case by the observation that
(h ⊎ h′)[s(x) := n] = h[s(x) :=⊥] ⊎ h′[s(x) := n].

C.2. INTUITIONISTIC REYNOLDS’ LOGIC 199

The following axiomatization is by Reynolds [187].

Definition C.2.6 (Weakest precondition axiomatization).

{p[x := e]} x := e {p}

{∃y((e ↪→ y) ∧ p[x := y])} x := [e] {p}

{(x ↪→ −) ∗ ((x ↪→ e) −∗ p)} [x] := e {p}

{∀y((y ↪→ e) −∗ p[x := y])} x := new(e) {p}

{(x ↪→ −) ∗ p} delete(x) {p}

The next two axiomatizations are novel.

Definition C.2.7 (Alternative weakest precondition axiomatization).

{p[x := e]} x := e {p}

{∃y((e ↪→ y) ∧ p[x := y])} x := [e] {p}

where y is fresh
{(x ↪→ −) ∧ p[[x] := e]} [x] := e {p}

{∀x((x ↪→ −) ∨ p[⟨x⟩ := e])} x := new(e) {p}

where x ̸∈ fv(e)

{(x ↪→ −) ∧ p[[x] := ⊥]} delete(x) {p}

Definition C.2.8 (Strongest postcondition axiomatization).

{p} x := e {(∃y)(p[x := y] ∧ e[x := y] = x)}

{(e ↪→ −) ∧ p} x := [e] {∃y(p[x := y] ∧ e[x := y] ↪→ x)}

{(x ↪→ −) ∧ p} [x] := e {∃y(p[[x] := y]) ∧ (x ↪→ e)}

where x ̸∈ fv(e)

{p} x := new(e) {(∃y(p[x := y]))[[x] := ⊥] ∧ (x ↪→ e)}

{(x ↪→ −) ∧ p} delete(x) {(x ↪→ −) → ∃y(p[[x] := y])}

where y is fresh everywhere

We showcase the soundness and completeness of the strongest postcondition
axiomatization of dispose (soundness and completeness of the above axiomatization
of the other instructions follow in a straightforward manner from the corresponding
substitution lemmas).

200 APPENDIX C. INTUITIONISTIC SEPARATION LOGIC

• |= {p ∧ (x ↪→ −)} delete(x) {(x ↪→ −) → ∃y(p[[x] := y])}:
Let h, s |= r ∧ x ↪→ −. We have to show that h[s(x) :=⊥], s |= x ↪→ − →
∃y(p[[x] := y]). That is, for h[s(x) :=⊥] ⊑ h′ such that s(x) ∈ dom(h′) we
have to show that h′, s |= ∃y(p[[x] := y]): We show h′[s(x) := n], s[y := n] |= p
for n = h(s(x)): By Lemma C.2.2, we have h′, s[y := n] |= p[[x] := y] if
and only if h′[s(x) := n], s[y := n] |= p. By monotonicity (h, s |= p and
h ⊑ h′[s(x) := n]) it follows that h′[s(x) := n], s |= p. Since y does not
appear in p, we thus have that h′[s(x) := n], s[y := n] |= p.

• |= {p ∧ (x ↪→ −)} delete(x) {q} implies |= ((x ↪→ −) → ∃y(p[[x] := y])) → q:
This boils does to showing that h, s |= x ↪→ − → ∃y(p[[x] := y]) implies h, s |=
q, for any heap h and store s. So, let h, s |= x ↪→ − → ∃y(p[[x] := y]), that is,
h′, s |= x ↪→ − implies h′, s |= ∃y(p[[x] := y]), for any h ⊑ h′. Let h′ = h, in
case s(x) ∈ dom(h), and h′ = h[s(x) := n], for some arbitrary n, otherwise.
Clearly, h ⊑ h′ and h′, s |= x ↪→ −. So h′, s |= ∃y(p[[x] := y]). Let h′, s[y :=
k] |= p[[x] := y], for some k. By Lemma C.2.2 again, it follows that h′[s(x) :=
k], s[y := k] |= p. From our assumption |= {p ∧ x ↪→ −} [x] :=⊥ {q} we then
derive that h′[s(x) :=⊥], s[y := k] |= q. By definition of h′ we have that
h′[s(x) :=⊥] ⊑ h, and so by monotonicity we infer h, s[y := k] |= q, and so
h, s |= q, assuming w.l.o.g. that y does not appear (free) in q.

Appendix D

Formalization in Coq

The main motivation behind formalizing results in a proof assistant is to rigorously
check hand-written proofs. For our formalization we used the dependently-typed
calculus of inductive constructions as implemented by the Coq proof assistant.

This thesis is accompanied by an artifact [112]. In this appendix, we discuss
two parts of the artifact: one corresponding to the alternative axiomatization
of Reynolds’ logic (see Section 4.5 and Appendix C) based on the insights from
dynamic separation logic (see Section 4.4), and one corresponding to the natural
deduction proof system for separation logic (see Section 3.3).

D.1 Alternative axiomatization

In this part of the artifact, we have used no axioms other than the axiom of function
extensionality (for every two functions f, g we have that f = g if f(x) = g(x) for
all x) and propositional extensionality (equivalent propositions are equal). This
means that we work with an underlying intuitionistic logic: we have not used the
axiom of excluded middle for reasoning classically about propositions. However,
the decidable propositions (propositions P for which the excluded middle P ∨ ¬P
can be proven) allow for a limited form of classical reasoning.

We formalize the basic instructions of our programming language (assignment,
look-up, mutation, allocation, and deallocation) and the semantics of basic instruc-
tions. For Boolean and arithmetic expressions we use a shallow embedding, so that
those expressions can be directly given as a Coq term of the appropriate type (with
a coincidence condition assumed, i.e. that values of expressions depend only on
finitely many variables of the store).

There are two approaches in formalizing the semantics of assertions: shallow
and deep embedding. We have taken both approaches. In the first approach, the
shallow embedding of assertions, we define assertions of DSL by their extension of
satisfiability (i.e. the set of heap and store pairs in which the assertion is satisfied),
that must satisfy a coincidence condition (assertions depend only on finitely many
variables of the store) and a stability condition (see below). The definition of

201

202 APPENDIX D. FORMALIZATION IN COQ

the modality operator follows from the semantics of programs, which includes
basic control structures such as the while-loop. In the second approach, the deep
embedding of assertions, assertions are modeled using an inductive type and we
explicitly introduce two meta-operations on assertions that capture the heap update
and heap clear modality. We have omitted the clauses for emp and (e 7→ e′), since
these could be defined as abbreviations, and we restrict to the basic instructions.

In the deep embedding we have no constructor corresponding to the program
modality [S]p. Instead, two meta-operations denoted p[⟨x⟩ = e] and p[⟨x⟩ := ⊥]
are defined recursively on the structure of p. Crucially, we formalized and proven
the following lemmas (the details are almost the same as showing the equivalences
hold in the shallow embedding, Lemmas 4.4.3 and 4.4.4):

Lemma D.1.1 (Heap update substitution lemma).
h, s |= p[⟨x⟩ := e] iff h[s(x) := s(e)], s |= p.

Lemma D.1.2 (Heap clear substitution lemma).
h, s |= p[⟨x⟩ := ⊥] iff h[s(x) := ⊥], s |= p.

By also formalizing a deep embedding, we show that the modality operator can
be defined entirely on the meta-level by introducing meta-operations on formulas
that are recursively defined by the structure of assertions: this captures Theo-
rem 4.4.5. For technical simplicity we restrict ourselves to the basic instructions,
but it should be natural to extend the formalization of the completeness result to
languages with while-statements, e.g. following [81]. On the other hand, in the
shallow embedding it is easier to show that our approach can be readily extended
to complex programs including while-loops.

In both approaches, the semantics of assertions is classical, although we work in
an intuitionistic meta-logic. We do this by employing a double negation translation,
following the set-up by R. O’Connor [162]. In particular, we have that our satisfac-
tion relation h, s |= p is stable, i.e. ¬¬(h, s |= p) implies h, s |= p. This allows us to
do classical reasoning on the image of the higher-order semantics of our assertions.

The source code of our formalization is accompanied with this thesis as a digital
artifact. The artifact consists of the following files:

• shallow/Language.v: Provides a shallow embedding of Boolean expressions
and arithmetic expressions, and a shallow embedding of our assertion language,
as presented in the prequel.

• shallow/Proof.v: Provides proof of the equivalences (E1-16), and addition-
ally standard equivalences for modalities involving complex programs.

• deep/Heap.v: Provides an axiomatization of heaps as partial functions.

• deep/Language.v: Provides a shallow embedding of Boolean expressions and
arithmetic expressions, and a deep embedding of our assertion language, on
which we inductively define the meta operations of heap update and heap
clear. We finally formalize Hoare triples and proof systems using weakest
precondition and strongest postcondition axioms for the basic instructions.

D.2. NATURAL DEDUCTION 203

• deep/Classical.v: Provides the classical semantics of assertions, and the
strong partial correctness semantics of Hoare triples. Further it provides
proofs of substitution lemmas corresponding to our meta-operators. Finally,
it provides proofs of the soundness and completeness of the aforementioned
proof systems.

D.2 Natural deduction
In this part of the artifact we use the classical axiom of excluded middle.

The proof system based on natural deduction is embedded in the Coq proof
assistant using an axiomatic approach. It is known that adding axioms to Coq may
affect soundness: it is future work to show that the axioms can be consistently
used. Nonetheless, using the axiomatic approach allows us to stay close to the
natural deduction proof system as introduced in this thesis.

Axiom D: Type.
Axiom hasval: D -> D -> Prop.

The type D is used as domain, over which we let the relation hasval range. This
relation is the weak points to relation, so the strong points to relation can be
defined in terms of this relation.

Axiom sep: Prop -> Prop -> Prop.
Axiom sepimp: Prop -> Prop -> Prop.

We also introduce axiomatically new connectives for use in propositions. Coq is
also extended with syntax for constructing separation logic formulas.

Axiom rooted: Prop -> (D -> D -> Prop) -> Prop.
Axiom root_equiv: forall (A: Prop), A <-> rooted A hasval.
Axiom root_above: forall (A: Prop) h h',

(forall x y, h x y <-> h' x y) -> rooted A h -> rooted A h'.
Axiom root_assoc: forall (A: Prop) h h',

rooted (rooted A h) h' <-> rooted A (fun x y => rooted (h x y) h').

A rooted assertion consists of an assertion and a (first-order) description of the
heap with respect to which it is evaluated. Note that in our axiomatization we
do not limit that the given function actually is a first-order description. We also
axiomatize that any assertion ϕ is equivalent to the rooted assertion (ϕ@ ↪→),
that we can replace equivalent descriptions of the heap, and extensionality of the
description of the heap.

Axiom root_True: forall (h: D -> D -> Prop), rooted True h.
Axiom root_False: forall (h: D -> D -> Prop), rooted False h -> False.
Axiom root_hasval: forall (h: D -> D -> Prop) x y,

rooted (hasval x y) h <-> h x y.

204 APPENDIX D. FORMALIZATION IN COQ

Axiom root_eq: forall (h: D -> D -> Prop) (T: Type) (x y: T),
rooted (x = y) h <-> x = y.

Axiom root_split': forall (A B: Prop) h,
(rooted A h /\ rooted B h) -> rooted (A /\ B) h.

Axiom root_join': forall (A B: Prop) h,
(rooted A h \/ rooted B h) -> rooted (A \/ B) h.

Axiom root_and_elim: forall (A B: Prop) h,
rooted (A /\ B) h -> rooted A h /\ rooted B h.

Axiom root_or_elim: forall (A B: Prop) h,
rooted (A \/ B) h -> rooted A h \/ rooted B h.

Axiom root_imp': forall (A B: Prop) h,
(rooted A h -> rooted B h) -> rooted (A -> B) h.

Axiom root_imp_elim': forall (A B: Prop) h,
rooted (A -> B) h -> rooted A h -> rooted B h.

Axiom root_forall': forall (T: Type) (A: T -> Prop) h,
(forall (x: T), rooted (A x) h) -> rooted (forall (x: T), A x) h.

Axiom root_forall_elim': forall (T: Type) (A: T -> Prop) h,
rooted (forall (x: T), A x) h -> forall (x: T), rooted (A x) h.

Axiom root_exists': forall (T: Type) (A: T -> Prop) h,
(exists (x: T), rooted (A x) h) -> rooted (exists (x: T), A x) h.

Axiom root_exists_elim': forall (T: Type) (A: T -> Prop) h,
rooted (exists (x: T), A x) h -> exists (x: T), rooted (A x) h.

We also axiomatize reasoning about the classical connectives under a rooted
assertion.

Definition Par (h1 h2: D -> D -> Prop) :=
(forall x y, h1 x y -> forall z, ~h2 x z) /\
(forall x y, h2 x y -> forall z, ~h1 x z).

Definition Split (h h1 h2: D -> D -> Prop) :=
(forall x y, h x y <-> h1 x y \/ h2 x y) /\ Par h1 h2.

Axiom sep_elim': forall (A B C: Prop) (h: D -> D -> Prop),
rooted (A ** B) h ->
(forall h1 h2, Split h h1 h2 -> rooted A h1 -> rooted B h2 -> C) -> C.

Axiom sep_intro': forall (A B: Prop) (h: D -> D -> Prop),
(exists h1 h2, Split h h1 h2 /\ rooted A h1 /\ rooted B h2) ->
rooted (A ** B) h.

Axiom sepimp_elim': forall (A B C: Prop) (h h': D -> D -> Prop),
rooted (A -** B) h ->
Par h h' /\ rooted A h' /\

(rooted B (fun x y => h x y \/ h' x y) -> C) -> C.
Axiom sepimp_intro': forall (A B: Prop) (h: D -> D -> Prop),

(forall h', Par h h' -> rooted A h' ->
rooted B (fun x y => h x y \/ h' x y)) ->

rooted (A -** B) h.

D.2. NATURAL DEDUCTION 205

Finally, we introduce axioms for reasoning about the new separating connectives.
We use the syntax ** for separating conjunction and -** for separating implication.

From these axioms, it becomes possible to prove the following lemmas:

Lemma sep_assoc (A B C: Prop): (A ** B) ** C <-> A ** B ** C.
Lemma sep_Empty (A: Prop): A ** emp <-> A.
Lemma sep_or (A B C: Prop): (A \/ B) ** C <-> A ** C \/ B ** C.
Lemma sep_and (A B C: Prop): (A /\ B) ** C -> A ** C /\ B ** C.
Lemma adjoint (A B: Prop): A ** (A -** B) -> B.

Also the modalities can be defined and properties proven:

Definition box (A: Prop) := True ** (emp /\ (True -** A)).
Lemma box_elim (A: Prop): box A -> A.
Lemma box_indep (A: Prop): box A -> forall h, rooted (box A) h.
Lemma root_under: forall (A B: Prop),

box (A -> B) -> forall h, rooted A h -> rooted B h.
Lemma box_rooted (A: Prop): (forall h, rooted A h) -> box A.
Lemma sep_mono (A A' B B': Prop):

box (A -> A') -> box (B -> B') -> A ** B -> A' ** B'.

Finally, we can prove the equivalence:

Definition F1: Prop :=
alloc x /\ ((x = y /\ z = w) \/ (x <> y /\ hasval y z)).

Definition F2: Prop :=
pointsToDash x ** (pointsTo x w -** hasval y z).

Proposition F12': F1 -> F2.
Proposition F21: F2 -> F1.

The artifact consists of the following file:

• proof/Language.v: Provides an axiomatization of natural deduction for
separation logic, and proves a number of lemmas based on theses axioms.

206 APPENDIX D. FORMALIZATION IN COQ

Bibliography

[1] Andrew Aberdein. Mathematical wit and mathematical cognition. Topics in
Cognitive Science, 5(2):231–250, 2013.

[2] Sten Agerholm and Peter Gorm Larsen. A lightweight approach to formal
methods. In International Workshop on Current Trends in Applied Formal
Methods, pages 168–183. Springer, 1998.

[3] Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H.
Schmitt, and Mattias Ulbrich, editors. Deductive Software Verification - The
KeY Book - From Theory to Practice, volume 10001 of Lecture Notes in
Computer Science. Springer, 2016.

[4] Wolfgang Ahrendt, Frank S. de Boer, and Immo Grabe. Abstract object
creation in dynamic logic: To be or not to be created. In 2nd World Congress
on Formal Methods (FM), volume 5850 of Lecture Notes in Computer Science,
pages 612–627. Springer, 2009.

[5] Miklós Ajtai. Isomorphism and higher order equivalence. Annals of Mathe-
matical Logic, 16(3):181–203, 1979.

[6] Mahmudul Faisal Al Ameen. Completeness of Verification System with
Separation Logic for Recursive Procedures. PhD thesis, Tokyo, 2016.

[7] Paul Ammann and Jeff Offutt. Introduction to software testing. Cambridge
University Press, 2016.

[8] Marc Andreessen. Why software is eating the world. Wall Street Journal,
2011.

[9] Peter B. Andrews. An introduction to mathematical logic and type theory: to
truth through proof, volume 27 of Applied Logic Series. Springer, 2013.

[10] Krzysztof R. Apt, Frank S. de Boer, and Ernst-Rüdiger Olderog. Verification
of sequential and concurrent programs. Springer, 3rd edition, 2009.

[11] Krzysztof R. Apt and Ernst-Rüdiger Olderog. Fifty years of Hoare’s logic.
Formal Aspects of Computing, 31(6):751–807, 2019.

207

208 BIBLIOGRAPHY

[12] Lukas Armborst and Marieke Huisman. Permission-based verification of
red-black trees and their merging. In 2021 IEEE/ACM 9th International
Conference on Formal Methods in Software Engineering (FormaliSE), pages
111–123. IEEE, 2021.

[13] Mario Rodriguez Artalejo. Some questions about expressiveness and relative
completeness in Hoare’s logic. Theoretical computer science, 39:189–206,
1985.

[14] Rob Arthan, Ursula Martin, Erik A. Mathiesen, and Paulo Oliva. A general
framework for sound and complete Floyd-Hoare logics. ACM Transactions
on Computational Logic (TOCL), 11(1):1–31, 2009.

[15] Callum Bannister, Peter Höfner, and Gerwin Klein. Backwards and forwards
with separation logic. In Jeremy Avigad and Assia Mahboubi, editors, 9th
International Conference on Interactive Theorem Proving (ITP), volume
10895 of Lecture Notes in Computer Science, pages 68–87. Springer, 2018.

[16] Gilles Barthe, Justin Hsu, and Kevin Liao. A probabilistic separation logic.
Proceedings of the ACM on Programming Languages, 4(POPL):1–30, 2019.

[17] Jon Barwise. Handbook of mathematical logic. Elsevier, 1982.

[18] Davide Basile. Specification and Verification of Contract-Based Applications.
PhD thesis, University of Pisa, 2016.

[19] Kevin Batz, Ira Fesefeldt, Marvin Jansen, Joost-Pieter Katoen, Florian
Keßler, Christoph Matheja, and Thomas Noll. Foundations for entailment
checking in quantitative separation logic. In 31st European Symposium on
Programming (ESOP), volume 13240 of Lecture Notes in Computer Science,
pages 57–84. Springer, 2022.

[20] Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. A decidable
fragment of separation logic. In 24th International Conference on Foundations
of Software Technology and Theoretical Computer Science (FSTTCS), volume
3328 of Lecture Notes in Computer Science, pages 97–109. Springer, 2005.

[21] Jan A. Bergstra and John V. Tucker. Expressiveness and the completeness of
Hoare’s logic. Journal of computer and system sciences, 25(3):267–284, 1982.

[22] Jan A. Bergstra and John V. Tucker. Some natural structures which fail
to possess a sound and decidable Hoare-like logic for their while-programs.
Theoretical Computer Science, 17(3):303–315, 1982.

[23] Guram Bezhanishvili and Lawrence S. Moss. Undecidability of first-order
logic, 2009. Educational module for the NSF-sponsored project on Learning
Discrete Mathematics and Computer Science via Primary Historical Sources.

BIBLIOGRAPHY 209

[24] Jinting Bian, Hans-Dieter A. Hiep, Frank S. de Boer, and Stijn de Gouw.
Integrating ADTs in KeY and their application to history-based reasoning.
In 24th International Symposium on Formal Methods (FM), volume 13047 of
Lecture Notes in Computer Science. Springer, 2021.

[25] Leyla Bilge and Tudor Dumitraş. Before we knew it: an empirical study of
zero-day attacks in the real world. In ACM Conference on Computer and
Communications Security, pages 833–844, 2012.

[26] David Binder, Thomas Piecha, and Peter Schroeder-Heister. The Logical
Writings of Karl Popper. Springer, 2022.

[27] Lars Birkedal and Hongseok Yang. Relational parametricity and separation
logic. In 10th International Conference on Foundations of Software Science
and Computational Structures (FoSSaCS), volume 4423 of Lecture Notes in
Computer Science, pages 93–107. Springer, 2007.

[28] Aleš Bizjak and Lars Birkedal. On models of higher-order separation logic.
Electronic Notes in Theoretical Computer Science, 336:57–78, 2018.

[29] Frank S. de Boer and Hans-Dieter A. Hiep. Completeness and complexity
of reasoning about call-by-value in Hoare logic. ACM Transactions on
Programming Languages and Systems (TOPLAS), 43(4), October 2021.

[30] M. Boogaard and E. Spoor. The software crisis in the Netherlands. In Serie
Research Memoranda, No. 1994-21. Vrije Universiteit Amsterdam, 1994.

[31] George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computability
and logic. Cambridge University Press, 2002.

[32] Richard Bornat. Proving pointer programs in Hoare logic. In 5th International
Conference on Mathematics of Program Construction (MPC), pages 102–126.
Springer, 2000.

[33] Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson.
Permission accounting in separation logic. In Proceedings of the 32nd ACM
Symposium on Principles of Programming Languages, pages 259–270, 2005.

[34] William D. Brewer. Gödel’s doctoral thesis, 1928–30: The completeness of
first-order logic. In Kurt Gödel: The Genius of Metamathematics, pages
101–129. Springer, 2022.

[35] Rémi Brochenin, Stéphane Demri, and Etienne Lozes. On the almighty wand.
Information and Computation, 211:106–137, 2012.

[36] Stephen Brookes. A semantics for concurrent separation logic. Theoretical
Computer Science, 375(1-3):227–270, 2007.

[37] Stephen Brookes. A revisionist history of concurrent separation logic. Elec-
tronic Notes in Theoretical Computer Science, 276:5–28, 2011.

210 BIBLIOGRAPHY

[38] Stephen Brookes and Peter W. O’Hearn. Concurrent separation logic. ACM
SIGLOG News, 3(3):47–65, 2016.

[39] James Brotherston, Richard Bornat, and Cristiano Calcagno. Cyclic proofs of
program termination in separation logic. ACM SIGPLAN Notices, 43(1):101–
112, 2008.

[40] James Brotherston and Max Kanovich. Undecidability of propositional
separation logic and its neighbours. In 25th IEEE Symposium on Logic in
Computer Science (LICS), pages 130–139. IEEE, 2010.

[41] Luitzen Egbertus Jan Brouwer. Intuitionism and formalism. In A. Heyting,
editor, Philosophy and Foundations of Mathematics, pages 123–138. Elsevier,
1975.

[42] Rodney M. Burstall. Some techniques for proving correctness of programs
which alter data structures. Machine intelligence, 7(23-50):3, 1972.

[43] Cristiano Calcagno. Semantic and Logical Properties of Stateful Programming.
PhD thesis, Universita di Genova, 2002.

[44] Cristiano Calcagno, Philippa Gardner, and Matthew Hague. From separation
logic to first-order logic. In 8th International Conference on Foundations of
Software Science and Computational Structures (FoSSaCS), volume 3441 of
Lecture Notes in Computer Science, pages 395–409. Springer, 2005.

[45] Cristiano Calcagno, Philippa Gardner, and Uri Zarfaty. Local reasoning about
data update. Electronic Notes in Theoretical Computer Science, 172:133–175,
2007.

[46] Qinxiang Cao, Santiago Cuellar, and Andrew W. Appel. Bringing order
to the separation logic jungle. In 15th Asian Symposium on Programming
Languages and Systems (APLAS), pages 190–211. Springer, 2017.

[47] Chen Chung Chang and H. Jerome Keisler. Model theory. Elsevier, 1990.

[48] Adam Chlipala. Mostly-automated verification of low-level programs in
computational separation logic. In 32nd ACM Conference on Programming
Language Design and Implementation (PLDI), pages 234–245, 2011.

[49] Krzysztof Ciesielski. Set theory for the working mathematician. Cambridge
University Press, 1997.

[50] Edmund M. Clarke Jr. Completeness and incompleteness theorems for Hoare-
like axiom systems. PhD thesis, Cornell University, 1976.

[51] Edmund M. Clarke Jr. Programming language constructs for which it is
impossible to obtain good Hoare axiom systems. Journal of the ACM,
26(1):129–147, 1979.

BIBLIOGRAPHY 211

[52] Edmund M. Clarke Jr. The characterization problem for Hoare logics. Philo-
sophical Transactions of the Royal Society of London. Series A, Mathematical
and Physical Sciences, 312(1522):423–440, 1984.

[53] Edmund M. Clarke Jr., Steven M. German, and Joseph Y. Halpern. Effective
axiomatizations of Hoare logics. Journal of the ACM, 30(3):612–636, 1983.

[54] Timothy T.R. Colburn, James H. Fetzer, and R.L. Rankin. Program veri-
fication: Fundamental issues in computer science, volume 14 of Studies in
Cognitive Systems. Springer, 2012.

[55] Stephen A. Cook. Soundness and completeness of an axiom system for
program verification. SIAM Journal on Computing, 7(1):70–90, 1978.

[56] Stephen A. Cook and Derek C. Oppen. An assertion language for data
structures. In 2nd ACM Symposium on Principles of Programming Languages
(POPL), pages 160–166, 1975.

[57] Laura Crosilla. Predicativity and Feferman. In Gerhard Jäger and Wilfried
Sieg, editors, Feferman on Foundations: Logic, mathematics, philosophy,
pages 423–447. Springer, 2017.

[58] H.-H. Dang, Peter Höfner, and Bernhard Möller. Algebraic separation logic.
Journal of Logic and Algebraic Programming, 80(6):221–247, 2011.

[59] Thibault Dardinier, Gaurav Parthasarathy, Noé Weeks, Peter Müller, and
Alexander J. Summers. Sound automation of magic wands. In 34th Interna-
tional Conference on Computer Aided Verification (CAV), volume 13372 of
Lecture Notes in Computer Science, pages 130–151. Springer, 2022.

[60] Clayton Allen Davis, Onur Varol, Emilio Ferrara, Alessandro Flammini,
and Filippo Menczer. Botornot: A system to evaluate social bots. In 25th
International Conference Companion on World Wide Web, pages 273–274.
ACM, 2016.

[61] Jacobus W. de Bakker. Mathematical theory of program correctness. Prentice-
Hall, 1980.

[62] Jacobus W. de Bakker and Lambert G.L.T. Meertens. On the completeness
of the inductive assertion method. Journal of Computer and System Sciences,
11(3):323–357, 1975.

[63] Frank S. de Boer. Reasoning about Dynamically Evolving Process Structures;
a proof theory for the parallel object-oriented language pool. PhD thesis, Vrije
Universiteit Amsterdam, April 1991.

[64] Stijn de Gouw, Frank S. de Boer, Richard Bubel, Reiner Hähnle, Jurriaan
Rot, and Dominic Steinhöfel. Verifying OpenJDK’s sort method for generic
collections. Journal of Automated Reasoning, 62(1):93–126, 2019.

212 BIBLIOGRAPHY

[65] Stijn de Gouw, Frank S. de Boer, and Jurriaan Rot. Proof Pearl: The KeY to
correct and stable sorting. Journal of Automated Reasoning, 53(2):129–139,
2014.

[66] Stijn de Gouw, Jurriaan Rot, Frank S. de Boer, Richard Bubel, and Reiner
Hähnle. OpenJDK’s java.utils.Collection.sort() is broken: The good, the bad
and the worst case. In 27th International Conference on Computer Aided
Verification (CAV), volume 9206 of Lecture Notes in Computer Science, pages
273–289. Springer, 2015.

[67] Stéphane Demri and Morgan Deters. Logical investigations on separation
logics. European Summer School on Logic, Language and Information
(ESSLLI), 2015.

[68] Stéphane Demri and Morgan Deters. Separation logics and modalities: a
survey. Journal of Applied Non-Classical Logics, 25(1):50–99, 2015.

[69] Stéphane Demri, Étienne Lozes, and Alessio Mansutti. The effects of adding
reachability predicates in propositional separation logic. In 21st International
Conference on Foundations of Software Science and Computation Structures
(FoSSaCS), volume 10803 of Lecture Notes in Computer Science, pages
476–493. Springer, 2018.

[70] Stéphane Demri, Étienne Lozes, and Alessio Mansutti. A complete axioma-
tisation for quantifier-free separation logic. Logical Methods in Computer
Science, 17(3), 2021.

[71] Edsger W. Dijkstra. A discipline of programming. Prentice-Hall, 1976.

[72] Yifan Ding, Nicholas Botzer, and Tim Weninger. Posthoc verification and
the fallibility of the ground truth. arXiv preprint arXiv:2106.07353, 2021.

[73] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew Parkin-
son, and Hongseok Yang. Views: compositional reasoning for concurrent
programs. In 40th ACM Symposium on Principles of Programming Languages
(POPL), pages 287–300. ACM, 2013.

[74] Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. A local shape
analysis based on separation logic. In 12th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 3920 of Lecture Notes in Computer Science, pages 287–302. Springer,
2006.

[75] Brijesh Dongol, Victor B.F. Gomes, and Georg Struth. A program con-
struction and verification tool for separation logic. In 12th International
Conference on Mathematics of Program Construction (MPC), volume 9129
of Lecture Notes in Computer Science, pages 137–158. Springer, 2015.

BIBLIOGRAPHY 213

[76] Frédérick Douzet, Louis Pétiniaud, Loqman Salamatian, Kevin Limonier,
Kavé Salamatian, and Thibaut Alchus. Measuring the fragmentation of
the internet: the case of the Border Gateway Protocol (BGP) during the
Ukrainian crisis. In 12th International Conference on Cyber Conflict (CyCon),
volume 1300, pages 157–182. IEEE, 2020.

[77] Mnacho Echenim, Radu Iosif, and Nicolas Peltier. On the expressive com-
pleteness of Bernays-Schönfinkel-Ramsey separation logic. arXiv preprint
arXiv:1802.00195, 2018.

[78] Mnacho Echenim, Radu Iosif, and Nicolas Peltier. The Bernays-Schönfinkel-
Ramsey class of separation logic with uninterpreted predicates. ACM Trans-
actions on Computational Logic (TOCL), 21(3):1–46, 2020.

[79] Herbert B. Enderton. A mathematical introduction to logic. Elsevier, 2001.

[80] Gergö Érdi. Compositional Type Checking. Master thesis, Eötvös Loránd
University, 2011.

[81] Mahmudul Faisal Al Ameen and Makoto Tatsuta. Completeness for recursive
procedures in separation logic. Theoretical Computer Science, 631:73–96,
2016.

[82] William M. Farmer. Simple Type Theory: A Practical Logic for Expressing
and Reasoning About Mathematical Ideas. Springer, 2023.

[83] Melvin Fitting. Proof methods for modal and intuitionistic logics, volume
169 of Synthese Library. Springer, 1983.

[84] Robert W. Floyd. Assigning meanings to programs. In Program Verification:
Fundamental Issues in Computer Science, pages 65–81. Springer, 1993.

[85] Thomas Forster. Quine’s New Foundations. In The Stanford Encyclopedia of
Philosophy. Metaphysics Research Lab, Stanford University, 2019.

[86] Nissim Francez. Program verification. Addison-Wesley, 1992.

[87] Thomas Frayne, Anne Morel, and Dana Scott. Reduced direct products.
Fundamenta mathematicae, 51(3):195–228, 1962.

[88] Dan Frumin, Emanuele D’Osualdo, Bas van den Heuvel, and Jorge A Pérez.
A bunch of sessions: a propositions-as-sessions interpretation of bunched
implications in channel-based concurrency. Proceedings of the ACM on
Programming Languages, 6(OOPSLA2):841–869, 2022.

[89] Didier Galmiche and Dominique Larchey-Wendling. Expressivity properties
of Boolean BI through relational models. In 26th International Conference
on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), volume 4337 of Lecture Notes in Computer Science, pages 357–368.
Springer, 2006.

214 BIBLIOGRAPHY

[90] Didier Galmiche and Daniel Méry. Tableaux and resource graphs for separa-
tion logic. Journal of Logic and Computation, 20(1):189–231, 2010.

[91] Mohan Ganesalingam. The language of mathematics. Springer, 2013.

[92] Hubert Garavel, Maurice H. ter Beek, and Jaco van de Pol. The 2020 expert
survey on formal methods. In 25th International Conference on Formal
Methods for Industrial Critical Systems (FMICS), volume 12327 of Lecture
Notes in Computer Science, pages 3–69. Springer, 2020.

[93] Kurt Gödel. Über die vollständigkeit des logikkalküls. PhD thesis, University
of Vienna, 1929.

[94] Michael D. Godfrey and David F. Hendry. The computer as Von Neumann
planned it. IEEE Annals of the History of Computing, 15(1):11–21, 1993.

[95] Joseph A. Goguen et al. Formal methods: Promises and problems. IEEE
Software, 14(1):73–85, 1997.

[96] Gerald Arthur Gorelick. A complete axiomatic system for proving assertions
about recursive and non-recursive programs. Master thesis, University of
Toronto, 1975.

[97] Clemens Grabmayer. Relating proof systems for recursive types. PhD thesis,
Vrije Universiteit Amsterdam, 2005.

[98] Clemens Grabmayer. From abstract rewriting systems to abstract proof
systems. arXiv preprint arXiv:0911.1412, 2009.

[99] Michal Grabowski. On relative completeness of Hoare logics. Information
and control, 66(1-2):29–44, 1985.

[100] David Gries. The science of programming. Springer, 2012.

[101] Jan Friso Groote, Ammar Osaiweran, and Jacco H. Wesselius. Analyzing the
effects of formal methods on the development of industrial control software.
In 27th IEEE International Conference on Software Maintenance (ICSM),
pages 467–472. IEEE, 2011.

[102] Reiner Hähnle. Dijkstra’s legacy on program verification. In C.A.R. Hoare
Krzysztof R. Apt, editor, Edsger Wybe Dijkstra: His Life, Work, and Legacy,
pages 105–140. ACM, 2022.

[103] Anthony Hall. Seven myths of formal methods. IEEE software, 7(5):11–19,
1990.

[104] Anthony Hall. Realising the benefits of formal methods. In 7th International
Conference on Formal Engineering Methods (ICFEM), volume 3785 of Lecture
Notes in Computer Science. Springer, 2005.

BIBLIOGRAPHY 215

[105] Joseph Y. Halpern, Robert Harper, Neil Immerman, Phokion G. Kolaitis,
Moshe Y. Vardi, and Victor Vianu. On the unusual effectiveness of logic in
computer science. Bulletin of Symbolic Logic, 7(2):213–236, 2001.

[106] Richard Wesley Hamming. The unreasonable effectiveness of mathematics.
The American Mathematical Monthly, 87(2):81–90, 1980.

[107] David Harel. First-Order Dynamic Logic, volume 68 of Lecture Notes in
Computer Science. Springer, 1979.

[108] Leon Henkin. The completeness of the first-order functional calculus. Journal
of Symbolic Logic, 14(3):159–166, 1949.

[109] Leon Henkin. Completeness in the theory of types. Journal of Symbolic Logic,
15(2), 1950.

[110] Andreas Herzig. A simple separation logic. In 20th International Workshop
on Logic, Language, Information, and Computation (WoLLIC), volume 8071
of Lecture Notes in Computer Science, pages 168–178. Springer, 2013.

[111] Joel Hestness, Stephen W. Keckler, and David A. Wood. A comparative
analysis of microarchitecture effects on CPU and GPU memory system behav-
ior. In 2014 IEEE International Symposium on Workload Characterization
(IISWC), pages 150–160. IEEE, 2014.

[112] Hans-Dieter A. Hiep. New Foundations for Separation Logic (Coq artifact),
2024. https://dx.doi.org/10.5281/zenodo.10558424.

[113] Hans-Dieter A. Hiep, Jinting Bian, Frank S. de Boer, and Stijn de Gouw.
History-based specification and verification of Java collections in KeY. In
16th International Conference on Integrated Formal Methods (iFM), volume
12546 of Lecture Notes in Computer Science, pages 199–217. Springer, 2020.

[114] Hans-Dieter A. Hiep, Olaf Maathuis, Jinting Bian, Frank S. de Boer, and
Stijn de Gouw. Verifying OpenJDK’s LinkedList using KeY (extended
paper). International Journal on Software Tools for Technology Transfer,
24(5):783–802, 2022.

[115] Hans-Dieter A. Hiep, Olaf Maathuis, Jinting Bian, Frank S. de Boer, Marko
van Eekelen, and Stijn de Gouw. Verifying OpenJDK’s LinkedList using
KeY. In 26th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), volume 12079 of Lecture
Notes in Computer Science, pages 217–234. Springer, 2020.

[116] Scott A. Hissam, Daniel Plakosh, and C. Weinstock. Trust and vulnerability
in open source software. IEEE Proceedings-Software, 149(1):47–51, 2002.

[117] Charles Anthony Richard Hoare. How did software get so reliable without
proof? In 3rd International Symposium of Formal Methods Europe (FME),
volume 1051 of Lecture Notes in Computer Science, pages 1–17. Springer,
1996.

https://dx.doi.org/10.5281/zenodo.10558424

216 BIBLIOGRAPHY

[118] Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576–580, 1969.

[119] Wilfrid Hodges. A shorter model theory. Cambridge University Press, 1997.

[120] Johannes Hostert, Andrej Dudenhefner, and Dominik Kirst. Undecidability
of dyadic first-order logic in Coq. In 13th International Conference on
Interactive Theorem Proving (ITP). Schloss Dagstuhl-Leibniz-Zentrum für
Informatik, 2022.

[121] Zhé Hóu and Alwen Tiu. Completeness for a first-order abstract separation
logic. In 14th Asian Symposium on Programming Languages and Systems
(APLAS), volume 10017 of Lecture Notes in Computer Science, pages 444–463.
Springer, 2016.

[122] Zhe Hou and Alwen Tiu. Completeness for a first-order abstract separation
logic. In Atsushi Igarashi, editor, Programming Languages and Systems -
14th Asian Symposium, APLAS 2016, Hanoi, Vietnam, November 21-23,
2016, Proceedings, volume 10017 of Lecture Notes in Computer Science, pages
444–463, 2016.

[123] Marieke Huisman, Dilian Gurov, and Alexander Malkis. Formal methods:
From academia to industrial practice. arXiv preprint arXiv:2002.07279, 2020.

[124] Roberto Ierusalimschy. A denotational approach for type-checking in object-
oriented programming languages. Computer languages, 19(1):19–40, 1993.

[125] Samin S. Ishtiaq and Peter W. O’Hearn. BI as an assertion language for muta-
ble data structures. In 28th ACM Symposium on Principles of Programming
Languages (POPL), pages 14–26, 2001.

[126] Sushil Jajodia, Paulo Shakarian, V.S. Subrahmanian, Vipin Swarup, and
Cliff Wang. Cyber Warfare: Building the Scientific Foundation, volume 56 of
Advances in Information Security. Springer, 2015.

[127] Jakob L. Jensen, Michael E. Jørgensen, Michael I. Schwartzbach, and Nils
Klarlund. Automatic verification of pointer programs using monadic second-
order logic. In 18th ACM Conference on Programming Language Design and
Implementation (PLDI), pages 226–234, 1997.

[128] Capers Jones. Measuring defect potentials and defect removal efficiency.
Journal of Defense Software Engineering, 21(6):11–13, 2008.

[129] Capers Jones and Olivier Bonsignour. The economics of software quality.
Addison-Wesley Professional, 2011.

[130] Paul C. Jorgensen and Byron DeVries. Software testing: a craftsman’s
approach. CRC Press, 5th edition, 2021.

BIBLIOGRAPHY 217

[131] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
RustBelt: Securing the foundations of the Rust programming language. In
Proceedings of the ACM on Programming Languages, volume 2 of POPL,
pages 1–34. ACM, 2017.

[132] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from the ground up: A modular foun-
dation for higher-order concurrent separation logic. Journal of Functional
Programming, 28:e20, 2018.

[133] Samuel Kamin. The expressive theory of stacks. Acta informatica, 24:695–709,
1987.

[134] Dominik Kirst, Johannes Hostert, Andrej Dudenhefner, Yannick Forster, Marc
Hermes, Mark Koch, Dominique Larchey-Wendling, Niklas Mück, Benjamin
Peters, Gert Smolka, et al. A Coq library for mechanised first-order logic. In
The Coq Workshop 2022. hal.science, 2022.

[135] Stephen Cole Kleene. Introduction to metamathematics. Wolters-Noordhoff,
1971.

[136] Stephen Cole Kleene. The work of Kurt Gödel. Journal of Symbolic Logic,
41(4):761–778, 1976.

[137] Ralf Kneuper. Limits of formal methods. Formal Aspects of Computing,
9:379–394, 1997.

[138] Tomasz Kowaltowski. Correctness of programs manipulating data structures.
PhD thesis, University of California, Berkeley, 1973.

[139] Robbert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs
in higher-order concurrent separation logic. In 44th ACM Symposium on
Principles of Programming Languages (POPL), pages 205–217, 2017.

[140] Neelakantan R. Krishnaswami, Jonathan Aldrich, Lars Birkedal, Kasper
Svendsen, and Alexandre Buisse. Design patterns in separation logic. In 4th
International Workshop on Types in Language Design and Implementation,
pages 105–116. ACM, 2009.

[141] Krishan Kumar and Sonal Dahiya. Programming languages: A survey.
International Journal on Recent and Innovation Trends in Computing and
Communication, 5(5):307–313, 2017.

[142] Mark Steven Laventhal. Verification of programs operating on structured
data. Bachelor and master thesis, MIT, 1974.

[143] Wonyeol Lee and Sungwoo Park. A proof system for separation logic with
magic wand. ACM SIGPLAN Notices, 49(1):477–490, 2014.

218 BIBLIOGRAPHY

[144] Martti Lehto and Pekka Neittaanmäki. Cyber security: Critical infrastructure
protection, volume 56 of Computational Methods in Applied Sciences. Springer,
2022.

[145] Ewen Maclean, Andrew Ireland, and Gudmund Grov. Proof automation for
functional correctness in separation logic. Journal of Logic and Computation,
26(2):641–675, 2016.

[146] Ratul Mahajan, David Wetherall, and Tom Anderson. Understanding
BGP misconfiguration. ACM SIGCOMM Computer Communication Review,
32(4):3–16, 2002.

[147] Makarov Evgeny Maratovich. Dynamic separation logic and its use in
education. Современные информационные технологии и ИТ-образование,
16(3):543–550, 2020.

[148] Nicolas Marti and Reynald Affeldt. A certified verifier for a fragment of
separation logic. Information and Media Technologies, 4(2):304–316, 2009.

[149] Ursula Martin, Erik A. Mathiesen, and Paulo Oliva. Hoare logic in the
abstract. In 20th International Workshop on Computer Science Logic (CSL),
volume 4207 of Lecture Notes in Computer Science, pages 501–515. Springer,
2006.

[150] Jeferson Mart́ınez and Javier M. Durán. Software supply chain attacks, a
threat to global cybersecurity: Solarwinds’ case study. International Journal
of Safety and Security Engineering, 11(5):537–545, 2021.

[151] John Matthews, J. Strother Moore, Sandip Ray, and Daron Vroon. Ver-
ification condition generation via theorem proving. In 13th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR), volume 4246 of Lecture Notes in Computer Science, pages 362–376.
Springer, 2006.

[152] Tom F. Melham. Higher order logic and hardware verification. Cambridge
University Press, 2009.

[153] Elliott Mendelson. Introduction to Mathematical Logic. CRC Press, 6th
edition, 2015.

[154] Bertrand Meyer. Design by contract and the component revolution. In 34th
International Conference on Technology of Object-Oriented Languages and
Systems (TOOLS). IEEE Computer Society, 2000.

[155] Ronald Middelkoop. A proof system for object oriented programming using
separation logic. Master thesis, Technische Universiteit Eindhoven, 2003.

[156] Raúl E. Monti, Robert Rubbens, and Marieke Huisman. On deductive
verification of an industrial concurrent software component with VerCors.
In International Symposium on Leveraging Applications of Formal Methods,
pages 517–534. Springer, 2022.

BIBLIOGRAPHY 219

[157] J.H. Morris. Verification oriented language design. Technical report, Univer-
sity of California, Berkeley, 1972.

[158] Joseph M. Morris. A general axiom of assignment. Theoretical Foundations
of Programming Methodology: Lecture Notes of an International Summer
School, directed by F.L. Bauer, E.W. Dijkstra and C.A.R. Hoare, pages 25–34,
1982.

[159] Peter Müller, Malte Schwerhoff, and Alexander J Summers. Viper: A
verification infrastructure for permission-based reasoning. In Verification,
Model Checking, and Abstract Interpretation: 17th International Conference,
VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceedings
17, pages 41–62. Springer, 2016.

[160] Glenford J. Myers, Tom Badgett, Todd M. Thomas, and Corey Sandler. The
art of software testing. Wiley Online Library, 2nd edition, 2004.

[161] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Del-
bianco. Communicating state transition systems for fine-grained concurrent
resources. In 23rd European Symposium on Programming Languages and
Systems (ESOP), volume 8410 of Lecture Notes in Computer Science, pages
290–310. Springer, 2014.

[162] Russell O’Connor. Classical mathematics for a constructive world. Mathe-
matical Structures in Computer Science, 21(4):861–882, 2011.

[163] Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theoretical
computer science, 375(1):271–307, 2007.

[164] Peter W. O’Hearn. A primer on separation logic (and automatic program
verification and analysis). Software safety and security, 33:286–318, 2012.

[165] Peter W. O’Hearn. Incorrectness logic. In Proceedings of the ACM on
Programming Languages, volume 4 of POPL, pages 1–32. ACM, 2019.

[166] Peter W. O’Hearn. Separation logic. Communications of the ACM, 62(2):86–
95, 2019.

[167] Peter W. O’Hearn and David J. Pym. The logic of bunched implications.
Bull. Symb. Log., 5(2):215–244, 1999.

[168] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning
about programs that alter data structures. In Laurent Fribourg, editor, 15th
International Workshop on Computer Science Logic (CSL), volume 2142 of
Lecture Notes in Computer Science, pages 1–19. Springer, 2001.

[169] Derek C. Oppen and Stephen A. Cook. Proving assertions about programs
that manipulate data structures. In 7th ACM Symposium on Theory of
Computing, pages 107–116, 1975.

220 BIBLIOGRAPHY

[170] Susan Owicki and David Gries. An axiomatic proof technique for parallel
programs i. Acta informatica, 6(4):319–340, 1976.

[171] Susan Owicki and David Gries. Verifying properties of parallel programs: An
axiomatic approach. Communications of the ACM, 19(5):279–285, 1976.

[172] Jens Pagel and Florian Zuleger. Strong-separation logic. ACM Transactions
on Programming Languages and Systems (TOPLAS), 44(3):1–40, 2022.

[173] Matthew J. Parkinson. Local reasoning for Java. Technical report, University
of Cambridge, Computer Laboratory, 2005.

[174] David Lorge Parnas. Really rethinking ‘formal methods’. Computer, 43(1):28–
34, 2010.

[175] David Parsons. Foundational Java: Key Elements and Practical Programming.
Springer, 2020.

[176] Cees Pierik and Frank S. de Boer. A syntax-directed Hoare logic for object-
oriented programming concepts. In 6th IFIP WG 6.1 International Conference
on Formal Methods for Open Object-Based Distributed Systems (FMOODS),
volume 2884 of Lecture Notes in Computer Science, pages 64–78. Springer,
2003.

[177] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation
logic using SMT. In 25th International Conference on Computer Aided
Verification (CAV), volume 8044 of Lecture Notes in Computer Science, pages
773–789. Springer, 2013.

[178] Ruzica Piskac, Thomas Wies, and Damien Zufferey. Automating separation
logic with trees and data. In 26th International Conference on Computer
Aided Verification (CAV), volume 8559 of Lecture Notes in Computer Science,
pages 711–728. Springer, 2014.

[179] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare logic. In 17th
Annual Symposium on Foundations of Computer Science, pages 109–121.
IEEE, 1976.

[180] David Pym, Jonathan M. Spring, and Peter W. O’Hearn. Why separation
logic works. Philosophy & Technology, 32:483–516, 2019.

[181] David J. Pym. The semantics and proof theory of the logic of bunched
implications. In Applied Logic Series, 2002.

[182] Panu Raatikainen. Gödel’s incompleteness theorems. In The Stanford En-
cyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
2020.

[183] Brian Randell. The 1968/69 NATO software engineering reports, 1996.

BIBLIOGRAPHY 221

[184] Habib ur Rehman, Eiad Yafi, Mohammed Nazir, and Khurram Mustafa. Se-
curity assurance against cybercrime ransomware. In International Conference
on Intelligent Computing & Optimization (ICO), pages 21–34. Springer, 2018.

[185] Andrew Reynolds, Radu Iosif, and Cristina Serban. Reasoning in the Bernays-
Schönfinkel-Ramsey fragment of separation logic. In 18th International
Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI), volume 10145 of Lecture Notes in Computer Science, pages 462–
482. Springer, 2017.

[186] Andrew Reynolds, Radu Iosif, Cristina Serban, and Tim King. A decision
procedure for separation logic in smt. In International Symposium on Au-
tomated Technology for Verification and Analysis, pages 244–261. Springer,
2016.

[187] John C. Reynolds. Intuitionistic reasoning about shared mutable data struc-
ture. In J. Davies, B. Roscoe, and J. Woodcock, editors, Millennial Per-
spectives in Computer Science, Cornerstones of Computing, pages 303–321.
Macmillan Education UK, 2000.

[188] John C. Reynolds. Separation logic: A logic for shared mutable data struc-
tures. In 17th IEEE Symposium on Logic in Computer Science (LICS), pages
55–74. IEEE Computer Society, 2002.

[189] John C. Reynolds. An overview of separation logic. In First Conference on
Verified Software: Theories, Tools, Experiments (VSTTE), volume 4171 of
Lecture Notes in Computer Science, pages 460–469. Springer, 2005.

[190] John C. Reynolds. An introduction to separation logic. In Engineering
Methods and Tools for Software Safety and Security, pages 285–310. IOS
Press, 2009.

[191] Tom Ridge and James Margetson. A mechanically verified, sound and
complete theorem prover for first order logic. In 18th International Conference
on Theorem Proving in Higher Order Logics, volume 3603 of Lecture Notes
in Computer Science, pages 294–309. Springer, 2005.

[192] Dennis M. Ritchie. The development of the C programming language. In
Richard G. Gibson Thomas J. Bergin, editor, History of Programming lan-
guages, pages 671–698. ACM, 1996.

[193] David S. Rosenblum. Formal methods and testing: why the state-of-the art
is not the state-of-the practice. ACM SIGSOFT Software Engineering Notes,
21(4):64–66, 1996.

[194] Yaman Roumani. Patching zero-day vulnerabilities: an empirical analysis.
Journal of Cybersecurity, 7(1), 2021.

222 BIBLIOGRAPHY

[195] Mohammad Salahuddin, Khorshed Alam, and Ilhan Ozturk. The effects of
Internet usage and economic growth on CO2 emissions in OECD countries: A
panel investigation. Renewable and Sustainable Energy Reviews, 62:1226–1235,
2016.

[196] Peter H. Schmitt, Mattias Ulbrich, and Benjamin Weiß. Dynamic frames
in Java dynamic logic. In International Conference on Formal Verification
of Object-Oriented Software (FoVeOOS), volume 6528 of Lecture Notes in
Computer Science, pages 138–152. Springer, 2011.

[197] Ravi Sen. Challenges to cybersecurity: Current state of affairs. Communica-
tions of the Association for Information Systems, 43(1):2, 2018.

[198] Syed Muhammad Ali Shah, Maurizio Morisio, and Marco Torchiano. An
overview of software defect density: A scoping study. In 19th Asia-Pacific
Software Engineering Conference, volume 1, pages 406–415. IEEE, 2012.

[199] Stewart Shapiro. Foundations without foundationalism: A case for second-
order logic. Clarendon Press, 1991.

[200] Sajjan G. Shiva. Advanced computer architectures. CRC Press, 2018.

[201] Mihaela Sighireanu, Juan A Navarro Pérez, Andrey Rybalchenko, Nikos
Gorogiannis, Radu Iosif, Andrew Reynolds, Cristina Serban, Jens Katelaan,
Christoph Matheja, Thomas Noll, et al. Sl-comp: competition of solvers for
separation logic. In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 116–132. Springer, 2019.

[202] Raymond M. Smullyan. Gödel’s incompleteness theorems. Oxford University
Press, 1992.

[203] Raymond M. Smullyan. First-Order Logic. Dover, 1995.

[204] James Somers. The coming software apocalypse. The Atlantic, 26:1, 2017.

[205] Harald Søndergaard and Peter Sestoft. Referential transparency, definiteness
and unfoldability. Acta Informatica, 27:505–517, 1990.

[206] Bjarne Stroustrup. A history of C++ 1979–1991. In Richard G. Gibson
Thomas J. Bergin, editor, History of Programming languages, pages 671–698.
ACM, 1996.

[207] Johanna Stuber. Verification of Red-Black Trees in KeY: A Case Study
in Deductive Java Verification. Bachelor thesis, Karlsruher Institut für
Technologie (KIT), 2023.

[208] Andy S. Tatman. Analysis and Formal Specification of OpenJDK’s BitSet.
Bachelors thesis, Leiden University, 2023.

BIBLIOGRAPHY 223

[209] Makoto Tatsuta, Wei-Ngan Chin, and Mahmudul Faisal Al Ameen. Com-
pleteness and expressiveness of pointer program verification by separation
logic. Information and Computation, 267:1–27, 2019.

[210] Balder ten Cate, Johan van Benthem, and Jouko Vaananen. Lindström
theorems for fragments of first-order logic. In 22nd Annual IEEE Symposium
on Logic in Computer Science (LICS), pages 280–292. IEEE, 2007.

[211] Aditya Thakur, Jason Breck, and Thomas Reps. Satisfiability modulo abstrac-
tion for separation logic with linked lists. In International SPIN Symposium
on Model Checking of Software, pages 58–67. ACM, 2014.

[212] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic Proof Theory.
Cambridge University Press, 2nd edition, 2000.

[213] Anne Sjerp Troelstra and Dirk Van Dalen. Constructivism in Mathematics,
Vol 1. Elsevier, 1988.

[214] Anne Sjerp Troelstra and Dirk Van Dalen. Constructivism in Mathematics,
Vol 2. Elsevier, 1988.

[215] Harvey Tuch, Gerwin Klein, and Michael Norrish. Types, bytes, and separa-
tion logic. In 34th ACM Symposium on Principles of Programming Languages
(POPL), pages 97–108, 2007.

[216] Jouko Väänänen. Second order logic or set theory? Bulletin of Symbolic
Logic, 18(1):91–121, 2012.

[217] Johan van Benthem and Kees Doets. Higher-order logic. In Handbook of
philosophical logic, pages 189–243. Springer, 1983.

[218] Guido van Rossum and Fred L. Drake Jr. Python tutorial. Technical report,
Centrum voor Wiskunde en Informatica, 1995.

[219] Moshe Y. Vardi. Move fast and break things. Communications of the ACM,
61(9):7–7, 2018.

[220] Philip Wadler. Propositions as types. Communications of the ACM, 58(12):75–
84, 2015.

[221] Benjamin Wagner. Understanding internet shutdowns: A case study from
Pakistan. International Journal of Communication, 12(1):22, 2018.

[222] Tjark Weber. Towards mechanized program verification with separation logic.
In 18th International Workshop on Computer Science Logic (CSL), volume
3210 of Lecture Notes in Computer Science, pages 250–264. Springer, 2004.

[223] Mark Allen Weiss. Data structures and algorithm analysis in Java. Pearson
Education, 2012.

224 BIBLIOGRAPHY

[224] Stephen B. Wicker. The ethics of zero-day exploits—the NSA meets the
trolley car. Communications of the ACM, 64(1):97–103, 2020.

[225] Eugene P. Wigner. The unreasonable effectiveness of mathematics in the
natural sciences. Communications on Pure and Applied Mathematics, 13:1–14,
1960.

[226] Jeannette M. Wing. A specifier’s introduction to formal methods. Computer,
23(9):8–22, 1990.

[227] Glynn Winskel. The formal semantics of programming languages: an intro-
duction. MIT Press, 1993.

[228] Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, João C
Pereira, and Peter Müller. Gobra: Modular specification and verification of go
programs. In 33rd International Conference on Computer Aided Verification
(CAV), volume 12759 of Lecture Notes in Computer Science, pages 367–379.
Springer, 2021.

[229] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A
systematic evaluation of large language models of code. In 6th International
ACM Symposium on Machine Programming, pages 1–10. ACM, 2022.

[230] Hongseok Yang. Local reasoning for stateful programs. PhD thesis, University
of Illinois, 2001.

[231] Hongseok Yang. Relational separation logic. Theoretical Computer Science,
375(1-3):308–334, 2007.

[232] Hongseok Yang and Peter W. O’Hearn. A semantic basis for local reasoning.
In Mogens Nielsen and Uffe Engberg, editors, 5th International Conference
on Foundations of Software Science and Computation Structures (FoSSaCS),
volume 2303 of Lecture Notes in Computer Science, pages 402–416. Springer,
2002.

[233] Hongyu Zhang. An investigation of the relationships between lines of code and
defects. In 2009 IEEE International Conference on Software Maintenance,
pages 274–283. IEEE, 2009.

[234] Michael Zhivich and Robert K. Cunningham. The real cost of software errors.
IEEE Security & Privacy, 7(2):87–90, 2009.

[235] Job Zwiers, Ulrich Hannemann, Yassine Lakhnech, Willem P. de Roever, and
Frank A. Stomp. Modular completeness: Integrating the reuse of specified
software in top-down program development. In Marie-Claude Gaudel and
Jim Woodcock, editors, FME’96: Industrial Benefit and Advances in Formal
Methods, volume 1051 of Lecture Notes in Computer Science, pages 595–608.
Springer, 1996.

List of Publications

1. Dynamic separation logic
Frank S. de Boer, Hans-Dieter A. Hiep, Stijn de Gouw
In: Proceedings of MFPS XXXIX
Electronic Notes in Theoretical Informatics and Computer Science, volume 3
Episciences, 2023

2. Formal Specification and Analysis of OpenJDK’s BitSet Class
Andy S. Tatman, Hans-Dieter A. Hiep, Stijn de Gouw
In: iFM 2023: 18th International Conference, iFM 2023, Proceedings
Lecture Notes in Computer Science, volume 14300
Springer, 2023

3. The logic of separation logic: models and proofs
Frank S. de Boer, Hans-Dieter A. Hiep, Stijn de Gouw
In: Automated Reasoning with Analytic Tableaux and Related Methods: 32nd
International Conference, TABLEAUX 2023, Proceedings
Lecture Notes in Computer Science, volume 14278
Springer, 2023

4. Integrating ADTs in KeY and their application to History-Based Reasoning
about Collection
Jinting Bian, Hans-Dieter A. Hiep, Frank S. de Boer, Stijn de Gouw
Formal Methods in System Design, volume 61
Springer, 2022

5. Footprint logic for object-oriented components
Frank S. de Boer, Stijn de Gouw, Hans-Dieter A. Hiep, Jinting Bian
In: Formal Aspects of Component Software: 18th International Conference,
FACS 2022, Proceedings
Lecture Notes in Computer Science, volume 13712
Springer, 2022

6. Verifying OpenJDK’s LinkedList using KeY (extended paper)
Hans-Dieter A. Hiep, Olaf Maathuis, Jinting Bian, Frank S. de Boer, Stijn
de Gouw
International Journal on Software Tools for Technology Transfer, volume 24
Springer, 2022

225

226 LIST OF PUBLICATIONS

7. Integrating ADTs in KeY and their application to History-Based Reasoning
Jinting Bian, Hans-Dieter A. Hiep, Frank S. de Boer, Stijn de Gouw
In: Formal Methods, 24th International Symposium, FM 2021, Proceedings
Lecture Notes in Computer Science, volume 13047
Springer, 2021

8. Completeness and complexity of reasoning about call-by-value in Hoare logic
Frank S. de Boer, Hans-Dieter A. Hiep
In: ACM Transactions On Programming Languages And Systems
Volume 43, Issue 4
Association for Computing Machinery, 2021

9. History-Based Specification and Verification of Java Collections in KeY
Hans-Dieter A. Hiep, Jinting Bian, Frank S. de Boer, Stijn de Gouw
In: Integrated Formal Methods, 16th International Conference, IFM 2020,
Proceedings
Lecture Notes in Computer Science, volume 12546
Springer, 2020

10. A Tutorial on Verifying LinkedList Using KeY
Hans-Dieter A. Hiep, Jinting Bian, Frank S. de Boer, Stijn de Gouw
In: Deductive Software Verification: Future Perspectives, Reflections on the
Occasion of 20 Years of KeY
Lecture Notes in Computer Science, volume 12345
Springer, 2020

11. History-based specification and verification of Java collections in KeY
Frank S. de Boer, Hans-Dieter A. Hiep
In: Proceedings of the 22nd ACM SIGPLAN International Workshop on
Formal Techniques for Java-Like Programs
Association for Computing Machinery, 2020

12. Reowolf: Synchronous Multi-party Communication over the Internet
Christopher Esterhuyse, Hans-Dieter A. Hiep
In: Formal Aspects of Component Software, 16th International Conference,
FACS 2019, Proceedings
Lecture Notes in Computer Science, volume 12018
Springer, 2019

13. Verifying OpenJDK’s LinkedList using KeY
Hans-Dieter A. Hiep, Olaf Maathuis, Jinting Bian, Frank S. de Boer, Marko
van Eekelen, Stijn de Gouw
In: Tools and Algorithms for the Construction and Analysis of Systems, 26th
International Conference, TACAS 2020, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2020, Proceedings,
Part II
Lecture Notes in Computer Science, volume 12079
Springer, 2020

227

14. Reowolf 1.0: Project Documentation
Christopher A. Esterhuyse, Hans-Dieter A. Hiep
Technical Report
CWI, 2020

15. Axiomatic Characterization of Trace Reachability for Concurrent Objects
Frank S. de Boer, Hans-Dieter A. Hiep
In: Integrated Formal Methods, 15th International Conference, IFM 2019,
Proceedings
Lecture Notes in Computer Science, volume 11918
Springer, 2019

See also the ORCiD page (0000-0001-9677-6644) for the current list of publications.

https://orcid.org/0000-0001-9677-6644?ref=hansdieterhiep.nl

228 LIST OF PUBLICATIONS

Summary

The research presented in this thesis concerns one of the most important questions
in software engineering of our time: how can we make sure that software is free
from memory safety bugs? Memory safety bugs are the major cause of common
vulnerabilities and exposures, and their presence threatens the stability and security
of our digital world. This question is so important that it has escalated to the highest
level. In a recent White House press release (February 26, 2024), the National
Cyber Director of the United States of America calls on the academic community to
help solve this hard problem:1“addressing [this challenge] is imperative to ensuring
we can secure our digital ecosystem long-term and protect the security of our
Nation.” The accompanying technical report advises on the use of memory safe
programming languages, and prominently mentions formal methods as one way to
achieve the highly desired freedom from bugs, including memory safety bugs.

In this thesis, formal methods are studied that are used to analyze software
for its correctness, where correctness means that software satisfies its specification
and incorrectness means the presence of a bug. The focus is on separation logic, a
formal method designed as a scalable technique in ensuring freedom from memory
safety bugs. Nowadays, separation logic is a well-established field of research: it
has been widely studied academically in the past twenty years, and is successfully
applied on an industry-wide scale to ensure memory safety. For example, separation
logic is the technique used to prove, with mathematical certainty, that memory
safe programming languages (such as Rust and Go) indeed live up to the promise
that “they offer a way to eliminate, not just mitigate, entire bug classes.”

In two parts, this thesis presents important scientific contributions that fill a
gap in the academic literature. The first part contains the missing completeness
theorem for separation logic, that is on par with the fundamental result by
Gödel for first-order logic. Completeness is important for any formal method as
it shows that the formal method can be adequately used for demonstrating every
validity. The second part finally introduces dynamic separation logic that gives
an alternative way to analyze memory safety problems, such that now it is possible
to prove elementary specifications without needing extra logical techniques. This is
important because it ensures ‘backwards compatibility’ with automated reasoning
techniques that are optimized for first-order logic.

1https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/
press-release-technical-report/

229

https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/

230 SUMMARY

Samenvatting

Titel:

Nieuwe fundamenten voor separatielogica

Het onderzoek dat in dit proefschrift wordt gepresenteerd betreft één van de meest
belangrijke vragen in programmatuurkunde op dit moment: hoe zorgen we ervoor
dat software geen geheugenbeveiligingsgaten bevat? Geheugenbeveiligingsgaten
zijn de grootste veroorzaker van veelvoorkomende kwetsbaarheden en lekken, en
zijn een ernstige bedreiging voor de stabiliteit en veiligheid van onze digitale wereld.
Deze vraag is dermate belangrijk dat het is geëscaleerd tot het hoogste niveau. In
een recent persbericht van het Witte Huis (26 februari 2024) vraagt de National
Cyber Director van de Verenigde Staten de academische gemeenschap om hulp
om dit hardnekkige probleem op te lossen:1“het aanpakken van [deze uitdaging]
is noodzakelijk om te zorgen voor de lange-termijn beveiliging van ons digitale
ecosysteem en om onze nationale veiligheid te beschermen.” Het bijbehorende
rapport adviseert over het gebruik van programmeertalen die geheugenveilig zijn,
en geeft nadrukkelijk aan dat gebruik van formele methoden leidt naar de zeer
gewenste vrijheid van bugs, waaronder de vrijheid van geheugenbeveiligingsgaten.

In dit proefschrift bestuderen we formele methoden voor het analyseren van
software op correctheid, waarbij correctheid betekent dat software voldoet aan
diens specificatie en incorrectheid betekent dat er een bug schuilgaat. De focus
ligt op separatielogica, een formele methode ontworpen als een schaalbare techniek
voor het garanderen van vrijheid van geheugenveiligheidsgaten. Vandaag de dag is
separatielogica een bewezen wetenschapsgebied: de afgelopen twintig jaar is het
uitgebreid bestudeerd binnen de academie, en zijn er tal van succesvolle toepassingen
in de industrie waarbij geheugenbeveiligingsgaten worden bestreden. Zo wordt
separatielogica als techniek toegepast om met wiskundige zekerheid te bewijzen
dat geheugenveiligetalen (zoals Rust en Go) daadwerkelijk de belofte nakomen om
“volledige categorieën bugs, niet alleen te mitigeren, maar te vermijden.”

In twee delen presenteert dit proefschrift belangrijke wetenschappelijke bijdra-

1https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/
press-release-technical-report/

231

https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/
https://www.whitehouse.gov/oncd/briefing-room/2024/02/26/press-release-technical-report/

232 SAMENVATTING

gen die een kloof in de academische literatuur dicht. Het eerste deel bevat de
ontbrekende volledigheidsstelling voor separatielogica, dat gelijk staat aan
het fundamentele resultaat van Gödel voor de predicatenlogica. Volledigheid is
belangrijk voor elke formele methode omdat het laat zien dat de formele methode
adequaat gebruikt kan worden, om alles wat valide is te demonstreren. Eindelijk
introduceert het tweede deel dynamische separatielogica, dat een alternatieve
manier geeft voor het analyseren van geheugenbeveiligingsproblemen zodat het nu
mogelijk is om basale specificaties te bewijzen zonder extra logische technieken.
Dit is belangrijk omdat het ‘achterwaartse compatibiliteit’ geeft met technieken
voor geautomatiseerd redeneren die optimaal werken voor predicatenlogica.

Curriculum Vitae

Hans-Dieter Anton Hiep was born on the 21st of March, 1991 in Hoorn, North-
Holland, the Netherlands. In 2010, he passed the matriculation examinations in
preparatory scientific education (VWO) at Werenfridus, Tabor College, in Hoorn.
In 2016, he completed a Bachelor of Science (BSc) degree cum laude in Computer
Science, at the Vrije Universiteit (VU), in Amsterdam. In 2018, he completed a
Master of Science (MSc) joint degree cum laude in Computer Science, at both the
Vrije Universiteit (VU) and the University of Amsterdam (UvA).

From November 2017 until June 2024, Hiep worked at the Dutch national
research laboratory for mathematics and computer science Centrum Wiskunde &
Informatica (CWI) in Amsterdam, and from November 2020 until June 2024 at
the Leiden Institute of Advanced Computer Science (LIACS) of Leiden University.

From July 2024, Hiep will start working as an Applied Scientist in the Automated
Reasoning Group at Amazon Web Services, in Cambridge, United Kingdom.

233

234 CURRICULUM VITAE

Titles in the IPA Dissertation Series since 2015

G. Alpár. Attribute-Based Identity
Management: Bridging the Crypto-
graphic Design of ABCs with the Real
World. Faculty of Science, Mathematics
and Computer Science, RU. 2015-01

A.J. van der Ploeg. Efficient Ab-
stractions for Visualization and Interac-
tion. Faculty of Science, UvA. 2015-02

R.J.M. Theunissen. Supervi-
sory Control in Health Care Systems.
Faculty of Mechanical Engineering,
TU/e. 2015-03

T.V. Bui. A Software Architecture
for Body Area Sensor Networks: Flexi-
bility and Trustworthiness. Faculty of
Mathematics and Computer Science,
TU/e. 2015-04

A. Guzzi. Supporting Developers’
Teamwork from within the IDE. Faculty
of Electrical Engineering, Mathematics,
and Computer Science, TUD. 2015-05

T. Espinha. Web Service Growing
Pains: Understanding Services and
Their Clients. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2015-06

S. Dietzel. Resilient In-network
Aggregation for Vehicular Networks.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2015-07

E. Costante. Privacy throughout the
Data Cycle. Faculty of Mathematics
and Computer Science, TU/e. 2015-08

S. Cranen. Getting the point
— Obtaining and understanding fix-
points in model checking. Faculty of
Mathematics and Computer Science,
TU/e. 2015-09

R. Verdult. The (in)security of pro-
prietary cryptography. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2015-10

J.E.J. de Ruiter. Lessons learned
in the analysis of the EMV and TLS
security protocols. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-11

Y. Dajsuren. On the Design of an Ar-
chitecture Framework and Quality Eval-
uation for Automotive Software Sys-
tems. Faculty of Mathematics and Com-
puter Science, TU/e. 2015-12

J. Bransen. On the Incremental Eval-
uation of Higher-Order Attribute Gram-
mars. Faculty of Science, UU. 2015-13

S. Picek. Applications of Evolutionary
Computation to Cryptology. Faculty of
Science, Mathematics and Computer
Science, RU. 2015-14

C. Chen. Automated Fault Localiza-
tion for Service-Oriented Software Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2015-15

S. te Brinke. Developing Energy-
Aware Software. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2015-16

R.W.J. Kersten. Software Analy-
sis Methods for Resource-Sensitive Sys-
tems. Faculty of Science, Mathematics
and Computer Science, RU. 2015-17

J.C. Rot. Enhanced coinduction. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2015-18

M. Stolikj. Building Blocks for
the Internet of Things. Faculty of
Mathematics and Computer Science,
TU/e. 2015-19

D. Gebler. Robust SOS Specifications
of Probabilistic Processes. Faculty of
Sciences, Department of Computer Sci-
ence, VUA. 2015-20

M. Zaharieva-Stojanovski. Closer
to Reliable Software: Verifying func-
tional behaviour of concurrent pro-
grams. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2015-21

R.J. Krebbers. The C standard for-
malized in Coq. Faculty of Science,
Mathematics and Computer Science,
RU. 2015-22

R. van Vliet. DNA Expressions –
A Formal Notation for DNA. Faculty
of Mathematics and Natural Sciences,
UL. 2015-23

S.-S.T.Q. Jongmans. Automata-
Theoretic Protocol Programming. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2016-01

S.J.C. Joosten. Verification of Inter-
connects. Faculty of Mathematics and
Computer Science, TU/e. 2016-02

M.W. Gazda. Fixpoint Logic, Games,
and Relations of Consequence. Faculty
of Mathematics and Computer Science,
TU/e. 2016-03

S. Keshishzadeh. Formal Analysis
and Verification of Embedded Systems
for Healthcare. Faculty of Mathematics
and Computer Science, TU/e. 2016-04

P.M. Heck. Quality of Just-in-Time
Requirements: Just-Enough and Just-
in-Time. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2016-05

Y. Luo. From Conceptual Models to
Safety Assurance – Applying Model-
Based Techniques to Support Safety As-
surance. Faculty of Mathematics and
Computer Science, TU/e. 2016-06

B. Ege. Physical Security Analysis
of Embedded Devices. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2016-07

A.I. van Goethem. Algorithms for
Curved Schematization. Faculty of
Mathematics and Computer Science,
TU/e. 2016-08

T. van Dijk. Sylvan: Multi-core De-
cision Diagrams. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2016-09

I. David. Run-time resource manage-
ment for component-based systems. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2016-10

A.C. van Hulst. Control Synthesis us-
ing Modal Logic and Partial Bisimilar-
ity – A Treatise Supported by Computer
Verified Proofs. Faculty of Mechanical
Engineering, TU/e. 2016-11

A. Zawedde. Modeling the Dynamics
of Requirements Process Improvement.
Faculty of Mathematics and Computer
Science, TU/e. 2016-12

F.M.J. van den Broek. Mobile Com-
munication Security. Faculty of Science,
Mathematics and Computer Science,
RU. 2016-13

J.N. van Rijn. Massively Collab-
orative Machine Learning. Faculty
of Mathematics and Natural Sciences,
UL. 2016-14

M.J. Steindorfer. Efficient Im-
mutable Collections. Faculty of Science,
UvA. 2017-01

W. Ahmad. Green Computing: Ef-
ficient Energy Management of Multi-
processor Streaming Applications via
Model Checking. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2017-02

D. Guck. Reliable Systems – Fault
tree analysis via Markov reward au-
tomata. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2017-03

H.L. Salunkhe. Modeling and Buffer
Analysis of Real-time Streaming Ra-
dio Applications Scheduled on Hetero-
geneous Multiprocessors. Faculty of
Mathematics and Computer Science,
TU/e. 2017-04

A. Krasnova. Smart invaders of pri-
vate matters: Privacy of communica-
tion on the Internet and in the Inter-
net of Things (IoT). Faculty of Science,
Mathematics and Computer Science,
RU. 2017-05

A.D. Mehrabi. Data Structures for
Analyzing Geometric Data. Faculty of
Mathematics and Computer Science,
TU/e. 2017-06

D. Landman. Reverse Engineering
Source Code: Empirical Studies of Lim-
itations and Opportunities. Faculty of
Science, UvA. 2017-07

W. Lueks. Security and Privacy
via Cryptography – Having your cake
and eating it too. Faculty of Science,
Mathematics and Computer Science,
RU. 2017-08

A.M. Şut̂ii. Modularity and Reuse
of Domain-Specific Languages: an ex-
ploration with MetaMod. Faculty of
Mathematics and Computer Science,
TU/e. 2017-09

U. Tikhonova. Engineering the Dy-
namic Semantics of Domain Specific
Languages. Faculty of Mathematics and
Computer Science, TU/e. 2017-10

Q.W. Bouts. Geographic Graph Con-
struction and Visualization. Faculty
of Mathematics and Computer Science,
TU/e. 2017-11

A. Amighi. Specification and Veri-
fication of Synchronisation Classes in
Java: A Practical Approach. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2018-01

S. Darabi. Verification of Program
Parallelization. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2018-02

J.R. Salamanca Tellez. Coequa-
tions and Eilenberg-type Correspon-
dences. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2018-03

P. Fiterău-Broştean. Active Model
Learning for the Analysis of Net-
work Protocols. Faculty of Science,
Mathematics and Computer Science,
RU. 2018-04

D. Zhang. From Concurrent State Ma-
chines to Reliable Multi-threaded Java
Code. Faculty of Mathematics and
Computer Science, TU/e. 2018-05

H. Basold. Mixed Inductive-Co-
inductive Reasoning Types, Programs
and Logic. Faculty of Science,
Mathematics and Computer Science,
RU. 2018-06

A. Lele. Response Modeling: Model
Refinements for Timing Analysis
of Runtime Scheduling in Real-time
Streaming Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2018-07

N. Bezirgiannis. Abstract Behavioral
Specification: unifying modeling and
programming. Faculty of Mathematics
and Natural Sciences, UL. 2018-08

M.P. Konzack. Trajectory Analysis:
Bridging Algorithms and Visualization.
Faculty of Mathematics and Computer
Science, TU/e. 2018-09

E.J.J. Ruijters. Zen and the
art of railway maintenance: Analysis
and optimization of maintenance via
fault trees and statistical model check-
ing. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-10

F. Yang. A Theory of Executability:
with a Focus on the Expressivity of Pro-
cess Calculi. Faculty of Mathematics
and Computer Science, TU/e. 2018-11

L. Swartjes. Model-based de-
sign of baggage handling systems.
Faculty of Mechanical Engineering,
TU/e. 2018-12

T.A.E. Ophelders. Continuous Simi-
larity Measures for Curves and Surfaces.
Faculty of Mathematics and Computer
Science, TU/e. 2018-13

M. Talebi. Scalable Performance
Analysis of Wireless Sensor Network.
Faculty of Mathematics and Computer
Science, TU/e. 2018-14

R. Kumar. Truth or Dare: Quan-
titative security analysis using attack
trees. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-15

M.M. Beller. An Empirical Evalua-
tion of Feedback-Driven Software De-
velopment. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2018-16

M. Mehr. Faster Algorithms for
Geometric Clustering and Competitive
Facility-Location Problems. Faculty of
Mathematics and Computer Science,
TU/e. 2018-17

M. Alizadeh. Auditing of User Be-
havior: Identification, Analysis and Un-
derstanding of Deviations. Faculty of
Mathematics and Computer Science,
TU/e. 2018-18

P.A. Inostroza Valdera. Structuring
Languages as Object-Oriented Libraries.
Faculty of Science, UvA. 2018-19

M. Gerhold. Choice and Chance -
Model-Based Testing of Stochastic Be-
haviour. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2018-20

A. Serrano Mena. Type Error
Customization for Embedded Domain-
Specific Languages. Faculty of Science,
UU. 2018-21

S.M.J. de Putter. Verification of
Concurrent Systems in a Model-Driven
Engineering Workflow. Faculty of
Mathematics and Computer Science,
TU/e. 2019-01

S.M. Thaler. Automation for Infor-
mation Security using Machine Learn-
ing. Faculty of Mathematics and Com-
puter Science, TU/e. 2019-02

Ö. Babur. Model Analytics and Man-
agement. Faculty of Mathematics and
Computer Science, TU/e. 2019-03

A. Afroozeh and A. Izmaylova.
Practical General Top-down Parsers.
Faculty of Science, UvA. 2019-04

S. Kisfaludi-Bak. ETH-Tight Algo-
rithms for Geometric Network Prob-
lems. Faculty of Mathematics and Com-
puter Science, TU/e. 2019-05

J. Moerman. Nominal Tech-
niques and Black Box Testing for Au-
tomata Learning. Faculty of Science,
Mathematics and Computer Science,
RU. 2019-06

V. Bloemen. Strong Connectivity
and Shortest Paths for Checking Mod-
els. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2019-07

T.H.A. Castermans. Algorithms
for Visualization in Digital Humanities.
Faculty of Mathematics and Computer
Science, TU/e. 2019-08

W.M. Sonke. Algorithms for
River Network Analysis. Faculty of
Mathematics and Computer Science,
TU/e. 2019-09

J.J.G. Meijer. Efficient Learning and
Analysis of System Behavior. Faculty
of Electrical Engineering, Mathematics
& Computer Science, UT. 2019-10

P.R. Griffioen. A Unit-Aware Matrix
Language and its Application in Con-
trol and Auditing. Faculty of Science,
UvA. 2019-11

A.A. Sawant. The impact of API
evolution on API consumers and how
this can be affected by API producers
and language designers. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2019-12

W.H.M. Oortwijn. Deductive Tech-
niques for Model-Based Concurrency
Verification. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2019-13

M.A. Cano Grijalba. Session-Based
Concurrency: Between Operational and
Declarative Views. Faculty of Science
and Engineering, RUG. 2020-01

T.C. Nägele. CoHLA: Rapid Co-
simulation Construction. Faculty of
Science, Mathematics and Computer
Science, RU. 2020-02

R.A. van Rozen. Languages of
Games and Play: Automating Game
Design & Enabling Live Programming.
Faculty of Science, UvA. 2020-03

B. Changizi. Constraint-Based Analy-
sis of Business Process Models. Faculty
of Mathematics and Natural Sciences,
UL. 2020-04

N. Naus. Assisting End Users in
Workflow Systems. Faculty of Science,
UU. 2020-05

J.J.H.M. Wulms. Stability of
Geometric Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2020-06

T.S. Neele. Reductions for Parity
Games and Model Checking. Faculty
of Mathematics and Computer Science,
TU/e. 2020-07

P. van den Bos. Coverage and Games
in Model-Based Testing. Faculty of Sci-
ence, RU. 2020-08

M.F.M. Sondag. Algorithms for Co-
herent Rectangular Visualizations. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2020-09

D. Frumin. Concurrent Separation
Logics for Safety, Refinement, and Se-
curity. Faculty of Science, Mathematics
and Computer Science, RU. 2021-01

A. Bentkamp. Superposition for
Higher-Order Logic. Faculty of Sci-
ences, Department of Computer Sci-
ence, VU. 2021-02

P. Derakhshanfar. Carving Infor-
mation Sources to Drive Search-based
Crash Reproduction and Test Case Gen-
eration. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2021-03

K. Aslam. Deriving Behavioral Spec-
ifications of Industrial Software Com-
ponents. Faculty of Mathematics and
Computer Science, TU/e. 2021-04

W. Silva Torres. Supporting Multi-
Domain Model Management. Faculty
of Mathematics and Computer Science,
TU/e. 2021-05

A. Fedotov. Verification Techniques
for xMAS. Faculty of Mathematics and
Computer Science, TU/e. 2022-01

M.O. Mahmoud. GPU Enabled
Automated Reasoning. Faculty of
Mathematics and Computer Science,
TU/e. 2022-02

M. Safari. Correct Optimized GPU
Programs. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2022-03

M. Verano Merino. Engineering
Language-Parametric End-User Pro-
gramming Environments for DSLs. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2022-04

G.F.C. Dupont. Network Security
Monitoring in Environments where Dig-
ital and Physical Safety are Critical.
Faculty of Mathematics and Computer
Science, TU/e. 2022-05

T.M. Soethout. Banking on Do-
main Knowledge for Faster Transac-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2022-06

P. Vukmirović. Implementation of
Higher-Order Superposition. Faculty of
Sciences, Department of Computer Sci-
ence, VU. 2022-07

J. Wagemaker. Extensions of (Con-
current) Kleene Algebra. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2022-08

R. Janssen. Refinement and Partial-
ity for Model-Based Testing. Faculty
of Science, Mathematics and Computer
Science, RU. 2022-09

M. Laveaux. Accelerated Verifica-
tion of Concurrent Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2022-10

S. Kochanthara. A Changing Land-
scape: On Safety & Open Source in Au-
tomated and Connected Driving. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2023-01

L.M. Ochoa Venegas. Break the
Code? Breaking Changes and Their Im-
pact on Software Evolution. Faculty
of Mathematics and Computer Science,
TU/e. 2023-02

N. Yang. Logs and models in engineer-
ing complex embedded production soft-
ware systems. Faculty of Mathematics
and Computer Science, TU/e. 2023-03

J. Cao. An Independent Timing Anal-
ysis for Credit-Based Shaping in Ether-
net TSN. Faculty of Mathematics and
Computer Science, TU/e. 2023-04

K. Dokter. Scheduled Protocol Pro-
gramming. Faculty of Mathematics and
Natural Sciences, UL. 2023-05

J. Smits. Strategic Language Work-
bench Improvements. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2023-06

A. Arslanagić. Minimal Structures
for Program Analysis and Verification.
Faculty of Science and Engineering,
RUG. 2023-07

M.S. Bouwman. Supporting Railway
Standardisation with Formal Verifica-
tion. Faculty of Mathematics and Com-
puter Science, TU/e. 2023-08

S.A.M. Lathouwers. Exploring
Annotations for Deductive Verifica-
tion. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2023-09

J.H. Stoel. Solving the Bank,
Lightweight Specification and Verifica-
tion Techniques for Enterprise Software.
Faculty of Mathematics and Computer
Science, TU/e. 2023-10

D.M. Groenewegen. WebDSL: Lin-
guistic Abstractions for Web Program-
ming. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2023-11

D.R. do Vale. On Semantical Meth-
ods for Higher-Order Complexity Anal-
ysis. Faculty of Science, Mathematics
and Computer Science, RU. 2024-01

M.J.G. Olsthoorn. More Effective
Test Case Generation with Multiple
Tribes of AI. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2024-02

B. van den Heuvel. Correctly
Communicating Software: Distributed,
Asynchronous, and Beyond. Faculty of
Science and Engineering, RUG. 2024-03

H.A. Hiep. New Foundations for Sep-
aration Logic. Faculty of Mathematics
and Natural Sciences, UL. 2024-04

	Introduction
	Pointer programs
	Why separation logic?
	Why new foundations?
	Scientific contributions

	Model theory of separation logic
	Syntax of separation logic
	Standard semantics
	Full semantics
	Embeddings
	Relational separation logic

	Proof theory of separation logic
	Sequent calculus
	Soundness and completeness
	Natural deduction
	Soundness and completeness
	Discussion

	Reynolds' logic
	General semantics and memory models
	Semantics of pointer programs
	Standard proof system
	Dynamic separation logic
	Alternative axiomatizations

	Conclusion
	Classical (higher-order) logic
	Assertion language
	Basic model theory
	Basic proof theory
	Soundness and completeness
	Adding back terms

	Hoare's logic
	Syntax of programs
	Operational semantics
	Denotational semantics
	Axiomatic semantics
	Recursive procedures

	Intuitionistic separation logic
	Standard semantics
	Intuitionistic Reynolds' logic

	Formalization in Coq
	Alternative axiomatization
	Natural deduction

	Bibliography
	List of Publications
	Summary
	Samenvatting
	Curriculum Vitae

